ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces via charge transfer induced modulation doping

265   0   0.0 ( 0 )
 نشر من قبل Yunzhong Chen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of two-dimensional electron gases (2DEGs) at the interface between two insulating complex oxides, such as LaAlO3 (LAO) or gamma-Al2O3 (GAO) epitaxially grown on SrTiO3 (STO) 1,2, provides an opportunity for developing all-oxide electronic devices3,4. These 2DEGs at complex oxide interfaces involve many-body interactions and give rise to a rich set of phenomena5, for example, superconductivity6, magnetism7,8, tunable metal-insulator transitions9, and phase separation10. However, large enhancement of the interfacial electron mobility remains a major and long-standing challenge for fundamental as well as applied research of complex oxides11-15. Here, we inserted a single unit cell insulating layer of polar La1-xSrxMnO3 (x=0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 created at room temperature. We find that the electron mobility of the interfacial 2DEG is enhanced by more than two orders of magnitude. Our in-situ and resonant x-ray spectroscopic in addition to transmission electron microscopy results indicate that the manganite layer undergoes unambiguous electronic reconstruction and leads to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits clear Shubnikov-de Haas oscillations and the initial manifestation of the quantum Hall effect, demonstrating an unprecedented high-mobility and low electron density oxide 2DEG system. These findings open new avenues for oxide electronics.



قيم البحث

اقرأ أيضاً

Interfaces between complex oxides constitute a unique playground for 2D electron systems (2DES), where superconductivity and magnetism can arise from combinations of bulk insulators. The 2DES at the LaAlO3/SrTiO3 interface is one of the most studied in this regard, and its origin is determined by both the presence of a polar field in LaAlO3 and the insurgence of point defects, such as oxygen vacancies and intermixed cations. These defects usually reside in the conduction channel and are responsible for a decreased electronic mobility. In this work we use an amorphous WO3 overlayer to control the defect formation and obtain an increased electron mobility and effective mass in WO3/LaAlO3/SrTiO3 heterostructures. The studied system shows a sharp insulator-to-metal transition as a function of both LaAlO3 and WO3 layer thickness. Low-temperature magnetotransport reveals a strong magnetoresistance reaching 900% at 10 T and 1.5 K, the presence of multiple conduction channels with carrier mobility up to 80 000 cm2/Vs and an unusually high effective mass of 5.6 me. The amorphous character of the WO3 overlayer makes this a versatile approach for defect control at oxide interfaces, which could be applied to other heterestrostures disregarding the constraints imposed by crystal symmetry.
We report on the transport characterization in dark and under light irradiation of three different interfaces: LaAlO3/SrTiO3, LaGaO3/SrTiO3, and the novel NdGaO3/SrTiO3 heterostructure. All of them share a perovskite structure, an insulating nature o f the single building blocks, a polar/non- polar character and a critical thickness of four unit cells for the onset of conductivity. The interface structure and charge confinement in NdGaO3/SrTiO3 are probed by atomic-scale- resolved electron energy loss spectroscopy showing that, similarly to LaAlO3/SrTiO3, extra electronic charge confined in a sheet of about 1.5 nm in thickness is present at the NdGaO3/SrTiO3 interface. Electric transport measurements performed in dark and under radiation show remarkable similarities and provide evidence that the persistent perturbation induced by light is an intrinsic peculiar property of the three investigated oxide-based polar/non-polar interfaces. Our work sets a framework for understanding the previous contrasting results found in literature about photoconductivity in LaAlO3/SrTiO3 and highlights the connection between the origin of persistent photoconductivity and the origin of conductivity itself. An improved understanding of the photo- induced metastable electron-hole pairs might allow to shed a direct light on the complex physics of this system and on the recently proposed perspectives of oxide interfaces for solar energy conversion.
269 - Y. Z. Chen , N. Pryds , J. R. Sun 2013
The discovery of two-dimensional electron gas (2DEG) at well-defined interfaces between insulating complex oxides provides the opportunity for a new generation of all-oxide electronics. Particularly, the 2DEG at the interface between two perovskite i nsulators represented by the formula of ABO3, such as LaAlO3 and SrTiO3, has attracted significant attention. In recent years, progresses have been made to decipher the puzzle of the origin of interface conduction, to design new types of oxide interfaces, and to improve the interfacial carrier mobility significantly. These achievements open the door to explore fundamental as well as applied physics of complex oxides. Here, we review our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures. Due to the presence of oxygen-vacancies at the SrTiO3 surface, metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3 involves Al, Ti, Zr, or Hf elements at the B-sites. Furthermore, relying on interface-stabilized oxygen vacancies, we have created a new type of 2DEG at the heterointerface between SrTiO3 and a spinel {gamma}-Al2O3 epitaxial film with compatible oxygen ions sublattices. The spinel/perovskite oxide 2DEG exhibits an electron mobility exceeding 100,000 cm2V-1s-1, more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Our findings pave the way for design of high-mobility all-oxide electronic devices and open a route towards studies of mesoscopic physics with complex oxides.
Modulation-doped oxide two-dimensional electron gas (2DEG) formed at the LaMnO3 (LMO) buffered disorderd-LaAlO3/SrTiO3 (d-LAO/LMO/STO) heterointerface, provides new opportunities for electronics as well as quantum physics. Herein, we studied the depe ndence of Sr-doping of La1-xSrxMnO3 (LSMO, x=0, 1/8, 1/3, 1/2, and 1) thus the filling of the Mn eg subbands as well as the LSMO polarity on the transport properties of d-LAO/LSMO/STO. Upon increasing the LSMO film thickness from 1 unit cell (uc) to 2 uc, a sharp metal to insulator transition of interface conduction was observed, independent of x. The resultant electron mobility is often higher than 1900 cm2V-1s-1 at 2 K, which increases upon decreasing x. The sheet carrier density, on the other hand, is in the range of 6.9E1012~1.8E1013 cm-2 (0.01~0.03 e/uc) and is largely independent on x for all the metallic d-LAO/LSMO (1 uc)/STO interfaces. These results are consistent with the charge transfer induced modulation doping scheme and clarify that the polarity of the buffer layer plays a trivial role on the modulation doping. The negligible tunability of the carrier density could result from the reduction of LSMO during the deposition of disordered LAO or that the energy levels of Mn 3d electrons at the interface of LSMO/STO are hardly varied even when changing the LSMO composition from LMO to SrMnO3.
High mobility two-dimensional electron gases (2DEGs) underpin todays silicon based devices and are of fundamental importance for the emerging field of oxide electronics. Such 2DEGs are usually created by engineering band offsets and charge transfer a t heterointerfaces. However, in 2011 it was shown that highly itinerant 2DEGs can also be induced at bare surfaces of different transition metal oxides where they are far more accessible to high resolution angle resolved photoemission (ARPES) experiments. Here we review work from this nascent field which has led to a systematic understanding of the subband structure arising from quantum confinement of highly anisotropic transition metal d-states along different crystallographic directions. We further discuss the role of different surface preparations and the origin of surface 2DEGs, the understanding of which has permitted control over 2DEG carrier densities. Finally, we discuss signatures of strong many-body interactions and how spectroscopic data from surface 2DEGs may be related to the transport properties of interface 2DEGs in the same host materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا