ﻻ يوجد ملخص باللغة العربية
We investigate magnetic, thermal, and dielectric properties of SrCuTe2O6, which is isostructural to PbCuTe2O6, a recently found, Cu-based 3D frustrated magnet with a corner sharing triangular spin network having dominant first and second nearest neighbor (nn) couplings [B. Koteswararao, et al. Phys. Rev. B 90, 035141 (2014)]. Although SrCuTe2O6 has a structurally similar spin network, but the magnetic data exhibit the characteristic features of a typical quasi -one-dimensional magnet, which mainly resulted from the magnetically dominant third nn coupling, uniform chains. The magnetic properties of this system are studied via magnetization (M), heat capacity (Cp), dielectric constant, measurements along with ab-initio band structure calculations. Magnetic susceptibility chi(T) data show a broad maximum at 32 K and the system orders at low temperatures TN1=5.5 K and TN2=4.5 K, respectively. The analysis of chi(T) data gives an intra-chain coupling, J3/kB, to be about - 42 K with non-negligible frustrated inter-chain couplings (J1/kB and J2/kB). The hopping parameters obtained from LDA band structure calculations also suggest the presence of coupled uniform chains. The observation of simultaneous anomalies in dielectric constant at TN1 and TN2 suggests the presence of magneto-dielectric effect in SrCuTe2O6. A magnetic phase diagram is also built based on M, C p, and dielectric constant results.
CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility
High-field specific heat measurements on BaCo2V2O8, which is a good realization of an S = 1/2 quasi one-dimensional Ising-like antifferomagnet, have been performed in magnetic fields up to 12 T along the chain and at temperature down to 200 mK. We ha
Neutron scattering from copper benzoate, Cu(C6D5COO)2 3D2O, provides the first direct experimental evidence for field-dependent incommensurate low energy modes in a one-dimensional spin S = 1/2 antiferromagnet. Soft modes occur for wavevectors q=pi +
The magnetoelectric (ME) effects are investigated in a cubic compound SrCuTe2O6, in which uniform Cu2+ (S=1/2) spin chains with considerable spin frustration exhibit a concomitant antiferromagnetic transition and dielectric constant peak at TN=5.5 K.
From experimental and theoretical analyses of magnetic and specific-heat properties, we present the complete magnetic phase diagram of the quasi-one-dimensional antiferromagnet Cu(N$_2$H$_5$)$_2$(SO$_4$)$_2$. On cooling and at zero magnetic field thi