ﻻ يوجد ملخص باللغة العربية
High-field specific heat measurements on BaCo2V2O8, which is a good realization of an S = 1/2 quasi one-dimensional Ising-like antifferomagnet, have been performed in magnetic fields up to 12 T along the chain and at temperature down to 200 mK. We have found a new magnetic ordered state in the field-induced phase above Hc ~ 3.9 T. We suggest that a novel type of the incommensurate order, which has no correspondence to the classical spin system, is realized in the field-induced phase.
We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8$ as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60
CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility
BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system that can be described in terms of Tomonaga-Luttinger liquid physics. This is explored in the present study where the magnetic field-temperature phase diagram is thoroughly est
We investigate magnetic, thermal, and dielectric properties of SrCuTe2O6, which is isostructural to PbCuTe2O6, a recently found, Cu-based 3D frustrated magnet with a corner sharing triangular spin network having dominant first and second nearest neig
Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have been measured as a function of magnetic field using neutron scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D incommensurate ordering