ﻻ يوجد ملخص باللغة العربية
Savannas are dynamical systems where grasses and trees can either dominate or coexist. Fires are known to be central in the functioning of the savanna biome though their characteristics are expected to vary along the rainfall gradients as observed in Sub-Saharan Africa. In this paper, we model the tree-grass dynamics using impulsive differential equations that consider fires as discrete events. This framework allows us to carry out a comprehensive qualitative mathematical analysis that revealed more diverse possible outcomes than the analogous continuous model. We investigated local and global properties of the equilibria and show that various states exist for the physiognomy of vegetation. Though several abrupt shifts between vegetation states appeared determined by fire periodicity, we showed that direct shading of grasses by trees is also an influential process embodied in the model by a competition parameter leading to bifurcations. Relying on a suitable nonstandard finite difference scheme, we carried out numerical simulations in reference to three main climatic zones as observable in Central Africa.
Many systems in life sciences have been modeled by reaction-diffusion equations. However, under some circumstances, these biological systems may experience instantaneous and periodic perturbations (e.g. harvest, birth, release, fire events, etc) such
Fires and rainfall are major mechanisms that regulate woody and grassy biomasses in savanna ecosystems. Conditions of long-lasting coexistence of trees and grasses have been mainly studied using continuous-time modelling of tree-grass competition. In
In this article, we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics (GFD) and climate dynamics. The main focus is on 1) the primitive equations (PEs) models and their related
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most impor
We study billiard in the plane endowed with symmetric $mathbb{Z}^2$-periodic obstacles of a right-angled polygonal shape. One of our main interests is the dependence of the diffusion rate of the billiard on the shape of the obstacle. We prove, in par