ﻻ يوجد ملخص باللغة العربية
Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) both self-propel at fixed speed $v$ along a body-axis ${bf u}$ that reorients either through slow angular diffusion (ABPs) or sudden complete randomisation (RTPs). We compare the physics of these two model systems both at microscopic and macroscopic scales. Using exact results for their steady-state distribution in the presence of external potentials, we show that they both admit the same effective equilibrium regime perturbatively that breaks down for stronger external potentials, in a model-dependent way. In the presence of collisional repulsions such particles slow down at high density: their propulsive effort is unchanged, but their average speed along ${bf u}$ becomes $v(rho) < v$. A fruitful avenue is then to construct a mean-field description in which particles are ghost-like and have no collisions, but swim at a variable speed $v$ that is an explicit function or functional of the density $rho$. We give numerical evidence that the recently shown equivalence of the fluctuating hydrodynamics of ABPs and RTPs in this case, which we detail here, extends to microscopic models of ABPs and RTPs interacting with repulsive forces.
Active Brownian particles (ABPs, such as self-phoretic colloids) swim at fixed speed $v$ along a body-axis ${bf u}$ that rotates by slow angular diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with constant $u$ until a random
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions.
We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely p
We study two interacting identical run and tumble particles (RTPs) in one dimension. Each particle is driven by a telegraphic noise, and in some cases, also subjected to a thermal white noise with a corresponding diffusion constant $D$. We are intere
We propose a model of run-and-tumble particles (RTPs) on a line with a fertile site at the origin. After going through the fertile site, a run-and-tumble particle gives rise to new particles until it flips direction. The process of creation of new pa