ﻻ يوجد ملخص باللغة العربية
We propose a model of run-and-tumble particles (RTPs) on a line with a fertile site at the origin. After going through the fertile site, a run-and-tumble particle gives rise to new particles until it flips direction. The process of creation of new particles is modelled by a fertility function (of the distance to the fertile site), multiplied by a fertility rate. If the initial conditions correspond to a single RTP with even probability density, the system is parity-invariant. The equations of motion can be solved in the Laplace domain, in terms of the density of right-movers at the origin. At large time, this density is shown to grow exponentially, at a rate that depends only on the fertility function and fertility rate. Moreover, the total density of RTPs (divided by the density of right-movers at the origin), reaches a stationary state that does not depend on the initial conditions, and presents a local minimum at the fertile site.
Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) both self-propel at fixed speed $v$ along a body-axis ${bf u}$ that reorients either through slow angular diffusion (ABPs) or sudden complete randomisation (RTPs). We compare the ph
We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely p
We study two interacting identical run and tumble particles (RTPs) in one dimension. Each particle is driven by a telegraphic noise, and in some cases, also subjected to a thermal white noise with a corresponding diffusion constant $D$. We are intere
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions.
We propose a method to exactly generate bridge run-and-tumble trajectories that are constrained to start at the origin with a given velocity and to return to the origin after a fixed time with another given velocity. The method extends the concept of