ﻻ يوجد ملخص باللغة العربية
We present an analysis of anomaly detection for machine learning redshift estimation. Anomaly detection allows the removal of poor training examples, which can adversely influence redshift estimates. Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies with one or more poorly measured photometric quantity. We select 2.5 million clean SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730 anomalous galaxies with spectroscopic redshift measurements which are flagged as unreliable. We contaminate the clean base galaxy sample with galaxies with unreliable redshifts and attempt to recover the contaminating galaxies using the Elliptical Envelope technique. We then train four machine learning architectures for redshift analysis on both the contaminated sample and on the preprocessed anomaly-removed sample and measure redshift statistics on a clean validation sample generated without any preprocessing. We find an improvement on all measured statistics of up to 80% when training on the anomaly removed sample as compared with training on the contaminated sample for each of the machine learning routines explored. We further describe a method to estimate the contamination fraction of a base data sample.
We apply machine learning in the form of a nearest neighbor instance-based algorithm (NN) to generate full photometric redshift probability density functions (PDFs) for objects in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS DR5). We
We apply instance-based machine learning in the form of a k-nearest neighbor algorithm to the task of estimating photometric redshifts for 55,746 objects spectroscopically classified as quasars in the Fifth Data Release of the Sloan Digital Sky Surve
We estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the ESO Public Kilo-Degree Survey (KiDS) Data Release 2. KiDS is an optical wide-field imaging survey carried out with the VLT Survey Telescope (VST) and the OmegaCAM ca
The scientific value of the next generation of large continuum surveys would be greatly increased if the redshifts of the newly detected sources could be rapidly and reliably estimated. Given the observational expense of obtaining spectroscopic redsh
The Epoch of Reionization (EoR) features a rich interplay between the first luminous sources and the low-density gas of the intergalactic medium (IGM), where photons from these sources ionize the IGM. There are currently few observational constraints