ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning Applied to the Reionization History of the Universe in the 21 cm Signal

59   0   0.0 ( 0 )
 نشر من قبل Paul La Plante
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Epoch of Reionization (EoR) features a rich interplay between the first luminous sources and the low-density gas of the intergalactic medium (IGM), where photons from these sources ionize the IGM. There are currently few observational constraints on key observables related to the EoR, such as the midpoint and duration of reionization. Although upcoming observations of the 21 cm power spectrum with next-generation radio interferometers such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA) are expected to provide information about the midpoint of reionization readily, extracting the duration from the power spectrum alone is a more difficult proposition. As an alternative method for extracting information about reionization, we present an application of convolutional neural networks (CNNs) to images of reionization. These images are two-dimensional in the plane of the sky, and extracted at a series of redshift values to generate image cubes that are qualitatively similar to those of the HERA and the SKA will generate in the near future. Additionally, we include the impact that the bright foreground signal from the the Milky Way imparts on such image cubes from interferometers, but do not include the noise induced from observations. We show that we are able to recover the duration of reionization $Delta$z to within 5% using CNNs, assuming that the midpoint of reionization is already relatively well constrained. These results have exciting impacts for estimating $tau$, the optical depth to the cosmic microwave background, which can help constrain other cosmological parameters.



قيم البحث

اقرأ أيضاً

70 - Anv{z}e Slosar 2016
The motion of the solar system with respect to the cosmic rest frame modulates the monopole of the Epoch of Reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative o f the monopole signal. We argue that although the signal is weaker by a factor of $sim100$, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Moreover, an experiment designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.
143 - Anastasia Fialkov 2013
We present the first complete calculation of the history of the inhomogeneous 21-cm signal from neutral hydrogen during the era of the first stars. We use hybrid computational methods to capture the large-scale distribution of the first stars, whose radiation couples to the neutral hydrogen emission, and to evaluate the 21-cm signal from z ~ 15-35. In our realistic picture large-scale fluctuations in the 21-cm signal are sourced by the inhomogeneous density field and by the Ly-alpha and X-ray radiative backgrounds. The star formation is suppressed by two spatially varying effects: negative feedback provided by the Lyman-Werner radiative background, and supersonic relative velocities between the gas and dark matter. Our conclusions are quite promising: we find that the fluctuations imprinted by the inhomogeneous Ly-alpha background in the 21-cm signal at z ~ 25 should be detectable with the Square Kilometer Array.
It is predicted that sources emitting UV radiation in the Lyman band during the epoch of reionization (EoR) showed a series of discontinuities in their Ly-alpha flux radial profile as a consequence of the thickness of the Lyman line series in the pri meval intergalactic medium. Through unsaturated Wouthuysen-Field coupling, these spherical discontinuities are also present in the 21 cm emission of the neutral IGM. In this article, we study the effects these discontinuities have on the differential brightness temperature of the 21 cm signal of neutral hydrogen in a realistic setting including all other sources of fluctuations. We focus on the early phases of the EoR, and we address the question of the detectability by the planned Square Kilometre Array. Such a detection would be of great interest, because these structures could provide an unambiguous diagnostic for the cosmological origin of the signal remaining after the foreground cleaning procedure. Also, they could be used as a new type of standard rulers. We determine the differential brightness temperature of the 21 cm signal in the presence of inhomogeneous Wouthuysen-Field effect using simulations which include (hydro)dynamics and both ionizing and Lyman lines 3D radiative transfer with the code LICORICE. We find that the Lyman horizons are clearly visible on the maps and radial profiles around the first sources of our simulations, but for a limited time interval, typically Delta z approx 2 at z sim 13. Stacking the profiles of the different sources of the simulation at a given redshift results in extending this interval to Delta z approx 4. When we take into account the implementation and design planned for the SKA (collecting area, sensitivity, resolution), we find that detection will be challenging. It may be possible with a 10 km diameter for the core, but will be difficult with the currently favored design of a 5 km core.
Using a suite of detailed numerical simulations we estimate the level of anisotropy generated by the time evolution along the light cone of the 21cm signal from the epoch of reionization. Our simulations include the physics necessary to model the sig nal during both the late emission regime and the early absorption regime, namely X-ray and Lyman-band 3D radiative transfer in addition to the usual dynamics and ionizing UV transfer. The signal is analysed using correlation functions perpendicular and parallel to the line of sight (LOS). We reproduce general findings from previous theoretical studies: the overall amplitude of the correlations and the fact that the light cone anisotropy is visible only on large scales (100 cMpc). However, the detailed behaviour is different. At 3 different epochs, the amplitude of the correlations along and perpendicular to the LOS differ from each other, indicating anisotropy. These 3 epochs are associated with 3 events of the global reionization history: the overlap of ionized bubbles, the onset of mild heating by X-rays in regions around the sources, and the onset of efficient Lyman-alpha coupling in regions around the sources. A 20x20 deg^2 survey area may be necessary to mitigate sample variance when we use the directional correlation functions. On a 100 cMpc scale the light cone anisotropy dominates over the anisotropy generated by peculiar velocity gradients computed in the linear regime. By modelling instrumental noise and limited resolution, we find that the anisotropy should be easily detectable by the SKA, assuming perfect foreground removal, the limiting factor being a large enough survey size. In the case of the LOFAR, it is likely that only first anisotropy episode will fall in the observing frequency range and will be detectable only if sample variance is much reduced (i.e. a larger than 20x20 deg^2 survey, which is not presently planned).
104 - Kazuhide Ichikawa 2009
The 21-cm PDF (i.e., distribution of pixel brightness temperatures) is expected to be highly non-Gaussian during reionization and to provide important information on the distribution of density and ionization. We measure the 21-cm PDF as a function o f redshift in a large simulation of cosmic reionization and propose a simple empirical fit. Guided by the simulated PDF, we then carry out a maximum likelihood analysis of the ability of upcoming experiments to measure the shape of the 21-cm PDF and derive from it the cosmic reionization history. Under the strongest assumptions, we find that upcoming experiments can measure the reionization history in the mid to late stages of reionization to 1-10% accuracy. Under a more flexible approach that allows for four free parameters at each redshift, a similar accuracy requires the lower noise levels of second-generation 21-cm experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا