ترغب بنشر مسار تعليمي؟ اضغط هنا

Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF$_6$ plasma treatment

112   0   0.0 ( 0 )
 نشر من قبل Boris Naydenov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we report the fabrication of stable, shallow (< 5 nm) nitrogen-vacancy (NV) centers in diamond by nitrogen delta doping at the last stage of the chemical vapor deposition (CVD) growth process. The NVs are stabilized after treating the diamond in $SF_6$ plasma, otherwise the color centers are not observed, suggesting a strong influence from the surface. X-Ray photoelectron spectroscopy measurements show the presence of only fluorine atoms on the surface, in contrast to previous studies, and suggests very good surface coverage. We managed to detect hydrogen nuclear magnetic resonance signal from protons in the immersion oil, revealing a depth of the NVs of about 5 nm



قيم البحث

اقرأ أيضاً

493 - Dolev Bluvstein , Zhiran Zhang , 2018
The charge degree of freedom in solid-state defects fundamentally underpins the electronic spin degree of freedom, a workhorse of quantum technologies. Here we study charge state properties of individual near-surface nitrogen-vacancy (NV) centers in diamond, where NV$^{-}$ hosts the metrologically relevant electron spin. We find that NV$^{-}$ initialization fidelity varies between individual centers and over time, and we alleviate the deleterious effects of reduced NV$^{-}$ initialization fidelity via logic-based initialization. We also find that NV$^{-}$ can ionize in the dark, which compromises spin measurements but is mitigated by measurement protocols we present here. We identify tunneling to a single, local electron trap as the mechanism for ionization in the dark and we develop NV-assisted techniques to control and readout the trap charge state. Our understanding and command of the NVs local electrostatic environment will simultaneously guide materials design and provide novel functionalities with NV centers.
Shallow nitrogen-vacancy (NV) centers in diamond are promising for nano-magnetometry for they can be placed proximate to targets. To study the intrinsic magnetic properties, zero-field magnetometry is desirable. However, for shallow NV centers under zero field, the strain near diamond surfaces would cause level anti-crossing between the spin states, leading to clock transitions whose frequencies are insensitive to magnetic signals. Furthermore, the charge noises from the surfaces would induce extra spin decoherence and hence reduce the magnetic sensitivity. Here we demonstrate that the relatively strong hyperfine coupling (130 MHz) from a first-shell 13C nuclear spin can provide an effective bias field to an NV center spin so that the clock-transition condition is broken and the charge noises are suppressed. The hyperfine bias enhances the dc magnetic sensitivity by a factor of 22 in our setup. With the charge noises suppressed by the strong hyperfine field, the ac magnetometry under zero field also reaches the limit set by decoherence due to the nuclear spin bath. In addition, the 130 MHz splitting of the NV center spin transitions allows relaxometry of magnetic noises simultaneously at two well-separated frequencies (~2.870 +/- 0.065 GHz), providing (low-resolution) spectral information of high-frequency noises under zero field. The hyperfine-bias enhanced zero-field magnetometry can be combined with dynamical decoupling to enhance single-molecule magnetic resonance spectroscopy and to improve the frequency resolution in nanoscale magnetic resonance imaging.
We report on an ion implantation technique utilizing a screening mask made of SiO$_2$ to control both the depth profile and the dose. By appropriately selecting the thickness of the screening layer, this method fully suppresses the ion channeling, br ings the location of the highest NV density to the surface, and effectively reduces the dose by more than three orders of magnitude. With a standard ion implantation system operating at the energy of 10 keV and the dose of 10$^{11}$ cm$^2$ and without an additional etching process, we create single NV centers close to the surface with coherence times of a few tens of $mu$s.
We show a marked reduction in the emission from nitrogen-vacancy (NV) color centers in single crystal diamond due to exposure of the diamond to hydrogen plasmas ranging from 700{deg}C to 1000{deg}C. Significant fluorescence reduction was observed ben eath the exposed surface to at least 80mm depth after ~10 minutes, and did not recover after post-annealing in vacuum for seven hours at 1100{deg}C. We attribute the fluorescence reduction to the formation of NVH centers by the plasma induced diffusion of hydrogen. These results have important implications for the formation of nitrogen-vacancy centers for quantum applications, and inform our understanding of the conversion of nitrogen-vacancy to NVH, whilst also providing the first experimental evidence of long range hydrogen diffusion through intrinsic high-purity diamond material.
We investigate the influence of plasma treatments, especially a 0V-bias, potentially low damage O$_2$ plasma as well as a biased Ar/SF$_6$/O$_2$ plasma on shallow, negative nitrogen vacancy (NV$^-$) centers. We ignite and sustain using our 0V-bias pl asma using purely inductive coupling. To this end, we pre-treat surfaces of high purity chemical vapor deposited single-crystal diamond (SCD). Subsequently, we create $sim$10 nm deep NV$^-$ centers via implantation and annealing. Onto the annealed SCD surface, we fabricate nanopillar structures that efficiently waveguide the photoluminescence (PL) of shallow NV$^-$. Characterizing single NV$^-$ inside these nanopillars, we find that the Ar/SF$_6$/O$_2$ plasma treatment quenches NV$^-$ PL even considering that the annealing and cleaning steps following ion implantation remove any surface termination. In contrast, for our 0V-bias as well as biased O$_2$ plasma, we observe stable NV$^-$ PL and low background fluorescence from the photonic nanostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا