ترغب بنشر مسار تعليمي؟ اضغط هنا

Analyses on the Variability Asymmetry of Kepler AGNs

127   0   0.0 ( 0 )
 نشر من قبل Xiao-Yang Chen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high quality light curves of Kepler space telescope make it possible to analyze the optical variability of AGNs with an unprecedented time resolution. Studying the asymmetry in variations could give independent constraints on the physical models for AGN variability. In this paper, we use Kepler observations of 19 sources to perform analyses on the variability asymmetry of AGNs. We apply smoothing-correction to light curves to deduct the bias to high frequency variability asymmetry, caused by long term variations which are poorly sampled due to the limited length of light curves. A parameter $beta$ based on structure functions is introduced to quantitively describe the asymmetry and its uncertainty is measured using extensive Monte-Carlo simulations. Individual sources show no evidence of asymmetry at timescales of $1sim20$ days and there is not a general trend toward positive or negative asymmetry over the whole sample. Stacking data of all 19 AGNs, we derive averaged $bar{beta}$ of 0.00$pm$0.03 and -0.02$pm$0.04 over timescales of 1$sim$5 days and 5$sim$20 days, respectively, statistically consistent with zero. Quasars and Seyfert galaxies show similar asymmetry parameters. Our results indicate that short term optical variations in AGNs are highly symmetric.



قيم البحث

اقرأ أيضاً

We present a detailed spectral analysis of the brightest Active Galactic Nuclei (AGN) identified in the 7Ms Chandra Deep Field South (CDF-S) survey over a time span of 16 years. Using a model of an intrinsically absorbed power-law plus reflection, wi th possible soft excess and narrow Fe K$alpha$ line, we perform a systematic X-ray spectral analysis, both on the total 7Ms exposure and in four different periods with lengths of 2-21 months. With this approach, we not only present the power-law slopes, column densities $N_H$, observed fluxes, and absorption-corrected 2-10~keV luminosities $L_X$ for our sample of AGNs, but also identify significant spectral variabilities among them on time scales of years. We find that the $N_H$ variabilities can be ascribed to two different types of mechanisms, either flux-driven or flux-independent. We also find that the correlation between the narrow Fe line EW and $N_H$ can be well explained by the continuum suppression with increasing $N_H$. Accounting for the sample incompleteness and bias, we measure the intrinsic distribution of $N_H$ for the CDF-S AGN population and present re-selected subsamples which are complete with respect to $N_H$. The $N_H$-complete subsamples enable us to decouple the dependences of $N_H$ on $L_X$ and on redshift. Combining our data with that from C-COSMOS, we confirm the anti-correlation between the average $N_H$ and $L_X$ of AGN, and find a significant increase of the AGN obscured fraction with redshift at any luminosity. The obscured fraction can be described as $f_{obscured}thickapprox 0.42 (1+z)^{0.60}$.
We present a detailed X-ray spectral analysis of 1152 AGNs selected in the Chandra Deep Fields (CDFs), in order to identify highly obscured AGNs ($N_{rm H} > 10^{23} rm cm^{-2}$). By fitting spectra with physical models, 436 (38%) sources with $L_{rm X} > 10^{42} rm erg s^{-1}$ are confirmed to be highly obscured, including 102 Compton-thick (CT) candidates. We propose a new hardness-ratio measure of the obscuration level which can be used to select highly obscured AGN candidates. The completeness and accuracy of applying this method to our AGNs are 88% and 80%, respectively. The observed logN-logS relation favors cosmic X-ray background models that predict moderate (i.e., between optimistic and pessimistic) CT number counts. 19% (6/31) of our highly obscured AGNs that have optical classifications are labeled as broad-line AGNs, suggesting that, at least for part of the AGN population, the heavy X-ray obscuration is largely a line-of-sight effect, i.e., some high-column-density clouds on various scales (but not necessarily a dust-enshrouded torus) along our sightline may obscure the compact X-ray emitter. After correcting for several observational biases, we obtain the intrinsic NH distribution and its evolution. The CT-to-highly-obscured fraction is roughly 52% and is consistent with no evident redshift evolution. We also perform long-term (~17 years in the observed frame) variability analyses for 31 sources with the largest number of counts available. Among them, 17 sources show flux variabilities: 31% (5/17) are caused by the change of NH, 53% (9/17) are caused by the intrinsic luminosity variability, 6% (1/17) are driven by both effects, and 2 are not classified due to large spectral fitting errors.
The advent of new time domain surveys and the imminent increase in astronomical data expose the shortcomings in traditional time series analysis (such as power spectra analysis) in characterising the abundantly varied, complex and stochastic light cu rves of Active Galactic Nuclei (AGN). Recent applications of novel methods from non-linear dynamics have shown promise in characterising higher modes of variability and time-scales in AGN. Recurrence analysis in particular can provide complementary information about characteristic time-scales revealed by other methods, as well as probe the nature of the underlying physics in these objects. Recurrence analysis was developed to study the recurrences of dynamical trajectories in phase space, which can be constructed from one-dimensional time series such as light curves. We apply the methods of recurrence analysis to two optical light curves of Kepler-monitored AGN. We confirm the detection and period of an optical quasi-periodic oscillation in one AGN, and confirm multiple other time-scales recovered from other methods ranging from 5 days to 60 days in both objects. We detect regions in the light curves that deviate from regularity, provide evidence of determinism and non-linearity in the mechanisms underlying one light curve (KIC 9650712), and determine a linear stochastic process recovers the dominant variability in the other light curve (Zwicky 229--015). We discuss possible underlying processes driving the dynamics of the light curves and their diverse classes of variability.
We analysed the light curves of four active galactic nuclei (AGN) from the Kepler field, and find multicomponent power density spectra with characteristic frequencies that are surprisingly similar to other Kepler AGNs (including ZW229-15). An identic al time series analysis of randomly selected planet candidate stars revealed the same features, suggesting an instrumental origin for the variability. This result is enigmatic, as these signals have been confirmed for ZW229-15 using independent observations from Swift. Based on our re-analysis of these Swift data and test simulations, we now distinguish the instrumental artifact in Kepler data from the real pattern in Swift observations. It appears that some other AGNs observed with instruments such as XMM-Newton show similar frequency components. This supports the conclusion that the similarity between the variability timescales of the Kepler artifact and real Swift features is coincidental.
We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected AGNs drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory (OVRO) blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, $m_5 geq 0.02$) all exhibit strong 15 GHz intrinsic variability ($m_{15} geq 0.1$). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at $sim 100, mu$as scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا