ﻻ يوجد ملخص باللغة العربية
We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected AGNs drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory (OVRO) blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, $m_5 geq 0.02$) all exhibit strong 15 GHz intrinsic variability ($m_{15} geq 0.1$). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at $sim 100, mu$as scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.
We performed the observation of the flux densities of SgrA* at 90 and 102GHz in order to detect the time lag between these frequencies using the Nobeyama Millimeter Array, which was previously reported at lower frequencies. We detected a radio flare
We carried out a pilot campaign of radio and optical band intra-day variability (IDV) observations of five blazars (3C66A, S5 0716+714, OJ287, B0925+504, and BL Lacertae) on December 18--21, 2015 by using the radio telescope in Effelsberg (Germany) a
We performed the observation of the flux densities of Sgr A* at 90 and 102 GHz on 6 April 2005 using the Nobeyama Millimeter Array in order to detect the time lag between these frequencies. We constructed light curves covering a few hour with 1 min b
Active galactic nuclei (AGN) are known for irregular variability on all time scales, down to intra-day variability with relative variations of a few percent within minutes to hours. On such short timescales, unexplored territory, such as the possible
We monitored BL Lacertae in the B, V, R and I bands for 14 nights during the period of 2016-2018. The source showed significant intraday variability on 12 nights. We performed colour-magnitude analysis and found that the source exhibited bluer-when-b