ﻻ يوجد ملخص باللغة العربية
We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its perihelion at 1.4 AU. From our observations, we estimate that the water production rate during closest approach to Mars was 1.5 +/- 0.3 x 1E28 molecules/s, that peak gas delivery rates were between 4.5-8.8 kg/s, and that in total between 3.1-5.4 x 1E4 kg cometary gas was delivered to the planet. Seasonal and evolutionary effects on the nucleus govern the pre-perihelion activity of comet Siding Spring. The sudden increase of its water production between 2.46-2.06 AU suggests the onset of the sublimation of icy grains in the coma, likely driven by CO2. As the comet got closer to the Sun, the relative contribution of the nucleus water production increased, while CO2 production rates decreased. The changes in the comets activity can be explained by a depletion of CO2, but the comets high mass loss rate suggests they may also reflect primordial heterogeneities in the nucleus.
The Mars flyby of C/2013 A1 (Siding Spring) represented a unique opportunity for imaging a long-period comet and resolving its nucleus and rotation period. Because of the small encounter distance and the high relative velocity, the goal of successful
We observed Comet C/Siding Spring using the Hubble Space Telescope (HST) during its close approach to Mars. The high spatial resolution images obtained through the F689M, F775W, and F845M filters reveal the characteristics of the dust coma. The dust
Comet C/2013 A1 (siding Spring) will experience a high velocity encounter with Mars on October 19, 2014 at a distance of 135,000 km +- 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and
The close encounter of Comet C/2013 A1 (Siding Spring) with Mars on October 19, 2014 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comets dust tai
Long period comet C/2021 A1 (Leonard) will approach Venus to within 0.029 au on 2021 December 18 and may subsequently graze the planet with its dust trail less than two days later. We observed C/2021 A1 with the Lowell Discovery Telescope on 2021 Jan