ﻻ يوجد ملخص باللغة العربية
The Mars flyby of C/2013 A1 (Siding Spring) represented a unique opportunity for imaging a long-period comet and resolving its nucleus and rotation period. Because of the small encounter distance and the high relative velocity, the goal of successfully observing C/2013 A1 from the Mars orbiting spacecrafts posed strict accuracy requirements on the comets ephemerides. These requirements were hard to meet, as comets are known for being highly unpredictable: astrometric observations can be significantly biased and nongravitational perturbations affect comet trajectories. Therefore, even prior to the encounter, we remeasured a couple of hundred astrometric images obtained with ground-based and Earth-orbiting telescopes. We also observed the comet with the Mars Reconnaissance Orbiters High Resolution Imaging Science Experiment (HiRISE) camera on 2014 October 7. In particular, these HiRISE observations were decisive in securing the trajectory and revealed that out-of-plane nongravitational perturbations were larger than previously assumed. Though the resulting ephemeris predictions for the Mars encounter allowed observations of the comet from the Mars orbiting spacecrafts, post-encounter observations show a discrepancy with the pre-encounter trajectory. We reconcile this discrepancy by employing the Rotating Jet Model, which is a higher fidelity model for nongravitational perturbations and provides an estimate of C/2013 A1s spin pole.
Comet C/2013 A1 (siding Spring) will experience a high velocity encounter with Mars on October 19, 2014 at a distance of 135,000 km +- 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and
We observed Comet C/Siding Spring using the Hubble Space Telescope (HST) during its close approach to Mars. The high spatial resolution images obtained through the F689M, F775W, and F845M filters reveal the characteristics of the dust coma. The dust
We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its peri
The close encounter of Comet C/2013 A1 (Siding Spring) with Mars on October 19, 2014 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comets dust tai
An analysis is presented for the photometric data on comet C/2013 A1 (Siding Spring) from observations at a large heliocentric distance (near 4.1 AU). Comet C/2013 A1 (Siding Spring) displays intense activity despite the relatively large heliocentric