ترغب بنشر مسار تعليمي؟ اضغط هنا

Floquet interface states in illuminated three-dimensional topological insulators

200   0   0.0 ( 0 )
 نشر من قبل Hernan Calvo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments showed that the surface of a three dimensional topological insulator develops gaps in the Floquet-Bloch band spectrum when illuminated with a circularly polarized laser. These Floquet-Bloch bands are characterized by non-trivial Chern numbers which only depend on the helicity of the polarization of the radiation field. Here we propose a setup consisting of a pair of counter-rotating lasers, and show that one-dimensional chiral states emerge at the interface between the two lasers. These interface states turn out to be spin-polarized and may trigger interesting applications in the field of optoelectronics and spintronics.



قيم البحث

اقرأ أيضاً

Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences are presented for this intriguing topological observable, owing to the presence of various challenges in solid-state systems. Here, using a three-dimensional acoustic topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented controllability over wave propagations.
Periodically driven systems can host so called anomalous topological phases, in which protected boundary states coexist with topologically trivial Floquet bulk bands. We introduce an anomalous version of reflection symmetry protected topological crys talline insulators, obtained as a stack of weakly-coupled two-dimensional layers. The system has tunable and robust surface Dirac cones even though the mirror Chern numbers of the Floquet bulk bands vanish. The number of surface Dirac cones is given by a new topological invariant determined from the scattering matrix of the system. Further, we find that due to particle-hole symmetry, the positions of Dirac cones in the surface Brillouin zone are controlled by an additional invariant, counting the parity of modes present at high symmetry points.
The anomalous Floquet Anderson insulator (AFAI) is a two dimensional periodically driven system in which static disorder stabilizes two topologically distinct phases in the thermodynamic limit. The presence of a unit-conducting chiral edge mode and t he essential role of disorder induced localization are reminiscent of the integer quantum Hall (IQH) effect. At the same time, chirality in the AFAI is introduced via an orchestrated driving protocol, there is no magnetic field, no energy conservation, and no (Landau level) band structure. In this paper we show that in spite of these differences the AFAI topological phase transition is in the IQH universality class. We do so by mapping the system onto an effective theory describing phase coherent transport in the system at large length scales. Unlike with other disordered systems, the form of this theory is almost fully determined by symmetry and topological consistency criteria, and can even be guessed without calculation. (However, we back this expectation by a first principle derivation.) Its equivalence to the Pruisken theory of the IQH demonstrates the above equivalence. At the same time it makes predictions on the emergent quantization of transport coefficients, and the delocalization of bulk states at quantum criticality which we test against numerical simulations.
175 - H.-M. Guo 2010
Topological insulators in three dimensions are characterized by a Z2-valued topological invariant, which consists of a strong index and three weak indices. In the presence of disorder, only the strong index survives. This paper studies the topologica l invariant in disordered three-dimensional system by viewing it as a super-cell of an infinite periodic system. As an application of this method we show that the strong index becomes non-trivial when strong enough disorder is introduced into a trivial insulator with spin-orbit coupling, realizing a strong topological Anderson insulator. We also numerically extract the gap range and determine the phase boundaries of this topological phase, which ?ts well with those obtained from self-consistent Born approximation (SCBA) and the transport calculations.
We numerically investigate the surface states of a strong topological insulator in the presence of strong electron-electron interactions. We choose a spherical topological insulator geometry to make the surface amenable to a finite size analysis. The single-particle problem maps to that of Landau orbitals on the sphere with a magnetic monopole at the center that has unit strength and opposite sign for electrons with opposite spin. Assuming density-density contact interactions, we find superconducting and anomalous (quantum) Hall phases for attractive and repulsive interactions, respectively, as well as chiral fermion and chiral Majorana fermion boundary modes between different phases. Our setup is preeminently adapted to the search for topologically ordered surface terminations that could be microscopically stabilized by tailored surface interaction profiles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا