ﻻ يوجد ملخص باللغة العربية
We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin-1/2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a fully polarized initial state is taken for the lattice, we obtain a general formula for the average fidelity of the two qubits QST, linking it to the one- and two-particle transfer amplitudes of the spin-excitations among the sites of the lattice. We then apply this formalism to a 1D spin chain with XX-Heisenberg type nearest-neighbour interactions adopting a protocol that is a generalization of the single qubit one proposed in Ref. [Phys. Rev. A 87, 062309 (2013)]. We find that a high-quality two qubit QST can be achieved provided one can control the local fields at sites near the sender and receiver. Under such conditions, we obtain an almost perfect transfer in a time that scales either linearly or, depending on the spin number, quadratically with the length of the chain.
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely disc
We explore reachable sets of open $n$-qubit quantum systems, the coherent parts of which are under full unitary control and that have just one qubit whose Markovian noise amplitude can be modulated in time such as to provide an additional degree of i
Entanglement and Bell nonlocality are used to describe quantum inseparabilities. Bell-nonlocal states form a strict subset of entangled states. A natural question arises concerning how much territory Bell nonlocality occupies entanglement for a gener
Two qubits in pure entangled states going through separate paths and interacting with their own individual environments will gradually lose their entanglement. Here we show that the entanglement change of a two-qubit state due to amplitude damping no
Taking the decoherence effect due to population relaxation into account, we investigate the entanglement properties for two qubits in the Heisenberg XY interaction and subject to an external magnetic field. It is found that the phenomenon of entangle