ﻻ يوجد ملخص باللغة العربية
We explore reachable sets of open $n$-qubit quantum systems, the coherent parts of which are under full unitary control and that have just one qubit whose Markovian noise amplitude can be modulated in time such as to provide an additional degree of incoherent control. In particular, adding bang-bang control of amplitude damping noise (non-unital) allows the dynamic system to act transitively on the entire set of density operators. This means one can transform any initial quantum state into any desired target state. Adding switchable bit-flip noise (unital), on the other hand, suffices to explore all states majorised by the initial state. We have extended our open-loop optimal control algorithm (DYNAMO package) by such degrees of incoherent control so that these unprecedented reachable sets can systematically be exploited in experiments. As illustrated for an ion trap experimental setting, open-loop control with noise switching can accomplish all state transfers one can get by the more complicated measurement-based closed-loop feedback schemes.
We study reachable sets of open n-qubit quantum systems, whose coherent parts are under full unitary control, by adding as a further degree of incoherent control switchable Markovian noise on a single qubit. In particular, adding bang-bang control of
We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin-1/2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a ful
Future communication and computation technologies that exploit quantum information require robust and well-isolated qubits. Electron spins in III-V semiconductor quantum dots, while promising candidates, see their dynamics limited by undesirable hyst
Entanglement and Bell nonlocality are used to describe quantum inseparabilities. Bell-nonlocal states form a strict subset of entangled states. A natural question arises concerning how much territory Bell nonlocality occupies entanglement for a gener
We address the dephasing dynamics of a qubit as an effective process to estimate the temperature of its environment. Our scheme is inherently quantum, since it exploits the sensitivity of the qubit to decoherence, and does not require thermalization