ﻻ يوجد ملخص باللغة العربية
We find a method to rewrite the equations of motion of scalar fields, generalized DBI field and quintessence, in the autonomous form foremph{arbitrary} scalar potentials. With the aid of this method, we explore the cosmic evolution of generalized DBI field and quintessence with the potential of multiple vacua. Then we find that the scalars are always frozen in the false or true vacuum in the end. Compared to the evolution of quintessence, the generalized DBI field has more times of oscillations around the vacuum of the potential. The reason for this point is that, with the increasing of speed $dot{phi}$, the friction term of generalized DBI field is greatly decreased. Thus the generalized DBI field acquires more times of oscillations.
It has been well known since the 1970s that stationary black holes do not generically support scalar hair. Most of the no-hair theorems which support this depend crucially upon the assumption that the scalar field has no time dependence. Here we fill
In the present article we study the cosmological evolution of a two-scalar field gravitational theory defined in the Jordan frame. Specifically, we assume one of the scalar fields to be minimally coupled to gravity, while the second field which is th
Why is the Universe so homogeneous and isotropic? We summarize a general study of a $gamma$-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The aniso
We present a new parameterization of quintessence potentials for dark energy based directly upon the dynamical properties of the equations of motion. Such parameterization arises naturally once the equations of motion are written as a dynamical syste
We consider the existence of an inflaton described by an homogeneous scalar field in the Szekeres cosmological metric. The gravitational field equations are reduced to two families of solutions which describe the homogeneous Kantowski-Sachs spacetime