ﻻ يوجد ملخص باللغة العربية
The quantum criticality of the two-lead two-channel pseudogap Anderson model is studied. Based on the non-crossing approximation, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, $propto |omega-mu_F|^r$ ($0<r<1$) near the Fermi energy. Equilibrium and non-equilibrium quantum critical properties at the two-channel Kondo (2CK) to local moment (LM) phase transition are addressed by extracting universal scaling functions in both linear and non-linear conductances, respectively. Clear distinctions are found on the critical exponents between linear and non-linear conductance. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.
The pseudogap Anderson impurity model provides a classic example of an essentially local quantum phase transition. Here we study its single-particle dynamics in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi l
The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to
We present a large N solution of a microscopic model describing the Mott-Anderson transition on a finite-coordination Bethe lattice. Our results demonstrate that strong spatial fluctuations, due to Anderson localization effects, dramatically modify t
Based on the non-crossing approximation, we calculate both the linear and nonlinear conductance within the two-lead two-channel single-impurity Anderson model where the conduction electron density of states vanishes in a power-law fashion $ propto |o
We study the behavior of the entropy of the pseudogap Bose-Fermi Kondo model within a dynamical large-$N$ limit, where $N$ is related to the symmetry group of the model. This model is a general quantum impurity model that describes a localized level