ترغب بنشر مسار تعليمي؟ اضغط هنا

Results on $betabeta$ decay with emission of two neutrinos or Majorons in $^{76}$Ge from GERDA Phase I

119   0   0.0 ( 0 )
 نشر من قبل Peter Grabmayr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A search for neutrinoless $betabeta$ decay processes accompanied with Majoron emission has been performed using data collected during Phase I of the GERmanium Detector Array (GERDA) experiment at the Laboratori Nazionali del Gran Sasso of INFN (Italy). Processes with spectral indices n = 1, 2, 3, 7 were searched for. No signals were found and lower limits of the order of 10$^{23}$ yr on their half-lives were derived, yielding substantially improved results compared to previous experiments with $^{76}$Ge. A new result for the half-life of the neutrino-accompanied $betabeta$ decay of $^{76}$Ge with significantly reduced uncertainties is also given, resulting in $T^{2 u}_{1/2} = (1.926 pm 0.095)cdot10^{21}$ yr.



قيم البحث

اقرأ أيضاً

The GERDA experiment searches for the lepton number violating neutrinoless double beta decay of $^{76}$Ge ($^{76}$Ge $rightarrow$ $^{76}$Se + 2e$^-$) operating bare Ge diodes with an enriched $^{76}$Ge fraction in liquid argon. The exposure for BEGe- type detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of $1.0_{-0.4}^{+0.6}cdot10^{-3}$ cts/(keV$cdot$kg$cdot$yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0$ ubetabeta$ experiment. No signal is observed and a new 90 % C.L. lower limit for the half-life of $8.0cdot10^{25}$ yr is placed when combining with our previous data. The median expected sensitivity assuming no signal is $5.8cdot10^{25}$ yr.
Two neutrino double beta decay of $^{76}$Ge to excited states of $^{76}$Se has been studied using data from Phase I of the GERDA experiment. An array composed of up to 14 germanium detectors including detectors that have been isotopically enriched in $^{76}$Ge was deployed in liquid argon. The analysis of various possible transitions to excited final states is based on coincidence events between pairs of detectors where a de-excitation $gamma$ ray is detected in one detector and the two electrons in the other. No signal has been observed and an event counting profile likelihood analysis has been used to determine Frequentist 90,% C.L. bounds for three transitions: ${0^+_{rm g.s.}-2^+_1}$: $T^{2 u}_{1/2}>$1.6$cdot10^{23}$ yr, ${0^+_{rm g.s.}-0^+_1}$: $T^{2 u}_{1/2}>$3.7$cdot10^{23}$ yr and ${0^+_{rm g.s.}-2^+_2}$: $T^{2 u}_{1/2}>$2.3$cdot10^{23}$ yr. These bounds are more than two orders of magnitude larger than those reported previously. Bayesian 90,% credibility bounds were extracted and used to exclude several models for the ${0^+_{rm g.s.}-0^+_1}$ transition.
Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the Standard Model of particle physics. This Letter reports the results from Phase I of the GERmanium Detector Array (GERD A) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope 76Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kgyr. A blind analysis is performed. The background index is about 1.10^{-2} cts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of 76Ge, T_1/2 > 2.1 10^{25} yr (90% C.L.). The combination with the results from the previous experiments with 76Ge yields T_1/2 > 3.0 10^{25} yr (90% C.L.).
149 - Karl-Tasso Knoepfle 2008
GERDA, the GERmanium Detector Array experiment, is a new double beta-decay experiment which is currently under construction in the INFN National Gran Sasso Laboratory (LNGS), Italy. It is implementing a new shielding concept by operating bare Ge diod es - enriched in Ge-76 - in high purity liquid argon supplemented by a water shield. The aim of GERDA is to verify or refute the recent claim of discovery, and, in a second phase, to achieve a two orders of magnitude lower background index than recent experiments. The paper discusses motivation, physics reach, design and status of construction of GERDA, and presents some R&D results.
The primary goal of the GERmanium Detector Array (Gerda) experiment at the Laboratori Nazionali del Gran Sasso of INFN is the search for the neutrinoless double beta decay of Ge-76. High-purity germanium detectors made from material enriched in Ge-76 are operated directly immersed in liquid argon, allowing for a substantial reduction of the background with respect to predecessor experiments. The first 5.04 kg yr of data collected in Phase I of the experiment have been analyzed to measure the half-life of the neutrino-accompanied double beta decay of Ge-76. The observed spectrum in the energy range between 600 and 1800 keV is dominated by the double beta decay of Ge-76. The half-life extracted from Gerda data is T(1/2) = (1.84 +0.14 -0.10) 10^{21} yr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا