ﻻ يوجد ملخص باللغة العربية
The primary goal of the GERmanium Detector Array (Gerda) experiment at the Laboratori Nazionali del Gran Sasso of INFN is the search for the neutrinoless double beta decay of Ge-76. High-purity germanium detectors made from material enriched in Ge-76 are operated directly immersed in liquid argon, allowing for a substantial reduction of the background with respect to predecessor experiments. The first 5.04 kg yr of data collected in Phase I of the experiment have been analyzed to measure the half-life of the neutrino-accompanied double beta decay of Ge-76. The observed spectrum in the energy range between 600 and 1800 keV is dominated by the double beta decay of Ge-76. The half-life extracted from Gerda data is T(1/2) = (1.84 +0.14 -0.10) 10^{21} yr.
We report on the measurement of the two-neutrino double beta decay half-life of $^{130}$Te with the CUORE-0 detector. From an exposure of 33.4 kg$cdot$y of TeO$_2$, the half-life is determined to be $T_{1/2}^{2 u}$ = [8.2 $pm$ 0.2 (stat.) $pm$ 0.6 (s
This Letter reports results from the NEMO-3 experiment based on an exposure of 1275 days with 661g of 130Te in the form of enriched and natural tellurium foils. The double beta decay rate of 130Te is found to be greater than zero with a significance
GERDA, the GERmanium Detector Array experiment, is a new double beta-decay experiment which is currently under construction in the INFN National Gran Sasso Laboratory (LNGS), Italy. It is implementing a new shielding concept by operating bare Ge diod
Using 9.4 g of Zr-96 and 1221 days of data from the NEMO-3 detector corresponding to 0.031 kg yr, the obtained 2vbb decay half-life measurement is [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10^19 yr. Different characteristics of the final state electrons
The Gerda experiment designed to search for the neutrinoless double beta decay in 76Ge has successfully completed the first data collection. No signal excess is found, and a lower limit on the half life of the process is set, with T1/2 > 2.1x10^25 yr