ترغب بنشر مسار تعليمي؟ اضغط هنا

Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system

301   0   0.0 ( 0 )
 نشر من قبل Shangkun Weng
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Shangkun Weng




اسأل ChatGPT حول البحث

In this paper, we first address the space-time decay properties for higher order derivatives of strong solutions to the Boussinesq system in the usual Sobolev space. The decay rates obtained here are optimal. The proof is based on a parabolic interpolation inequality, bootstrap argument and some weighted estimates. Secondly, we present a new solution integration formula for the Boussinesq system, which will be employed to establish the existence of strong solutions in scaling invariant function spaces. We further investigate the asymptotic profiles and decay properties of these strong solutions. Our results recover and extend the important results in Brandolese and Schonbek (Tran. A. M.S. Vol 364, No.10, 2012, 5057-5090).



قيم البحث

اقرأ أيضاً

213 - Said Benachour 2007
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
We prove small data modified scattering for the Vlasov-Poisson system in dimension $d=3$ using a method inspired from dispersive analysis. In particular, we identify a simple asymptotic dynamic related to the scattering mass.
214 - Shangkun Weng 2014
We address the analyticity and large time decay rates for strong solutions of the Hall-MHD equations. By Gevrey estimates, we show that the strong solution with small initial date in $H^r(mathbb{R}^3)$ with $r>f 52$ becomes analytic immediately after $t>0$, and the radius of analyticity will grow like $sqrt{t}$ in time. Upper and lower bounds on the decay of higher order derivatives are also obtained, which extends the previous work by Chae and Schonbek (J. Differential Equations 255 (2013), 3971--3982).
We prove the existence of entire solutions of the Monge-Amp`ere equations with prescribed asymptotic behavior at infinity of the plane, which was left by Caffarelli-Li in 2003. The special difficulty of the problem in dimension two is due to the glob al logarithmic term in the asymptotic expansion of solutions at infinity. Furthermore, we give a PDE proof of the characterization of the space of solutions of the Monge-Amp`ere equation $det abla^2 u=1$ with $kge 2$ singular points, which was established by Galvez-Martinez-Mira in 2005. We also obtain the existence in higher dimensional cases with general right hand sides.
243 - Fei Jiang , Song Jiang 2021
This paper is concerned with the asymptotic behaviors of global strong solutions to the incompressible non-resistive viscous magnetohydrodynamic (MHD) equations with large initial perturbations in two-dimensional periodic domains in Lagrangian coordi nates. First, motivated by the odevity conditions imposed in [Arch. Ration. Mech. Anal. 227 (2018), 637--662], we prove the existence and uniqueness of strong solutions under some class of large initial perturbations, where the strength of impressive magnetic fields depends increasingly on the $H^2$-norm of the initial perturbation values of both velocity and magnetic field. Then, we establish time-decay rates of strong solutions. Moreover, we find that $H^2$-norm of the velocity decays faster than the perturbed magnetic field. Finally, by developing some new analysis techniques, we show that the strong solution convergence in a rate of the field strength to the solution of the corresponding linearized problem as the strength of the impressive magnetic field goes to infinity. In addition, an extension of similar results to the corresponding inviscid case with damping is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا