ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of entire solutions of Monge-Amp`ere equations with prescribed asymptotic behaviors

119   0   0.0 ( 0 )
 نشر من قبل Jingang Xiong
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the existence of entire solutions of the Monge-Amp`ere equations with prescribed asymptotic behavior at infinity of the plane, which was left by Caffarelli-Li in 2003. The special difficulty of the problem in dimension two is due to the global logarithmic term in the asymptotic expansion of solutions at infinity. Furthermore, we give a PDE proof of the characterization of the space of solutions of the Monge-Amp`ere equation $det abla^2 u=1$ with $kge 2$ singular points, which was established by Galvez-Martinez-Mira in 2005. We also obtain the existence in higher dimensional cases with general right hand sides.



قيم البحث

اقرأ أيضاً

186 - Jingyong Zhu 2014
In this paper, the author studies quaternionic Monge-Amp`ere equations and obtains the existence and uniqueness of the solutions to the Dirichlet problem for such equations without any restriction on domains. Our paper not only answers to the open pr oblem proposed by Semyon Alesker in [3], but also extends relevant results in [7] to the quaternionic vector space.
Let $X$ be a compact Kahler manifold of dimension $n$ and $omega$ a Kahler form on $X$. We consider the complex Monge-Amp`ere equation $(dd^c u+omega)^n=mu$, where $mu$ is a given positive measure on $X$ of suitable mass and $u$ is an $omega$-plurisu bharmonic function. We show that the equation admits a Holder continuous solution {it if and only if} the measure $mu$, seen as a functional on a complex Sobolev space $W^*(X)$, is Holder continuous. A similar result is also obtained for the complex Monge-Amp`ere equations on domains of $mathbb{C}^n$.
We study the global wellposedness of the Euler-Monge-Amp`ere (EMA) system. We obtain a sharp, explicit critical threshold in the space of initial configurations which guarantees the global regularity of EMA system with radially symmetric initial data . The result is obtained using two independent approaches -- one using spectral dynamics of Liu & Tadmor [Comm. Math. Physics 228(3):435-466, 2002] and another based on the geometric approach of Brenier & Loeper [Geom. Funct. Analysis 14(6):1182--1218, 2004]. The results are extended to 2D radial EMA with swirl.
We prove the existence of a continuous quasi-plurisubharmonic solution to the Monge-Amp`ere equation on a compact Hermitian manifold for a very general measre on the right hand side. We admit measures dominated by capacity in a certain manner, in par ticular, moderate measures studied by Dinh-Nguyen-Sibony. As a consequence, we give a characterization of measures admitting Holder continuous quasi-plurisubharmonic potential, inspired by the work of Dinh-Nguyen.
A new proof for stability estimates for the complex Monge-Amp`ere and Hessian equations is given, which does not require pluripotential theory. A major advantage is that the resulting stability estimates are then uniform under general degenerations o f the background metric in the case of the Monge-Amp`ere equation, and under degenerations to a big class in the case of Hessian equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا