ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic analysis of the one-dimensional quantum walks by the Tsallis and Renyi entropies

106   0   0.0 ( 0 )
 نشر من قبل Yusuke Ide
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Tsallis and Renyi entropies are important quantities in the information theory, statistics and related fields because the Tsallis entropy is an one parameter generalization of the Shannon entropy and the Renyi entropy includes several useful entropy measures such as the Shannon entropy, Min-entropy and so on, as special choices of its parameter. On the other hand, the discrete-time quantum walk plays important roles in various applications, for example, quantum speed-up algorithm and universal computation. In this paper, we show limiting behaviors of the Tsallis and Renyi entropies for discrete-time quantum walks on the line which are starting from the origin and defined by arbitrary coin and initial state. The results show that the Tsallis entropy behaves in polynomial order of time with the parameter dependent exponent while the Renyi entropy tends to infinity in logarithmic order of time independent of the choice of the parameter. Moreover, we show the difference between the Renyi entropy and the logarithmic function characterizes by the Renyi entropy of the limit distribution of the quantum walk. In addition, we show an example of asymptotic behavior of the conditional Renyi entropies of the quantum walk.



قيم البحث

اقرأ أيضاً

Many of the traditional results in information theory, such as the channel coding theorem or the source coding theorem, are restricted to scenarios where the underlying resources are independent and identically distributed (i.i.d.) over a large numbe r of uses. To overcome this limitation, two different techniques, the information spectrum method and the smooth entropy framework, have been developed independently. They are based on new entropy measures, called spectral entropy rates and smooth entropies, respectively, that generalize Shannon entropy (in the classical case) and von Neumann entropy (in the more general quantum case). Here, we show that the two techniques are closely related. More precisely, the spectral entropy rate can be seen as the asymptotic limit of the smooth entropy. Our results apply to the quantum setting and thus include the classical setting as a special case.
We show that the new quantum extension of Renyis alpha-relative entropies, introduced recently by Muller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203, (2013), and Wilde, Winter, Yang, Commun. Math. Phys. 331, (2014), have an operational interpretation in the strong converse problem of quantum hypothesis testing. Together with related results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding bound, our result suggests that the operationally relevant definition of the quantum Renyi relative entropies depends on the parameter alpha: for alpha<1, the right choice seems to be the traditional definition, whereas for alpha>1 the right choice is the newly introduced version. As a sideresult, we show that the new Renyi alpha-relative entropies are asymptotically attainable by measurements for alpha>1, and give a new simple proof for their monotonicity under completely positive trace-preserving maps.
158 - M. Mosonyi , F. Hiai 2009
We show that the quantum $alpha$-relative entropies with parameter $alphain (0,1)$ can be represented as generalized cutoff rates in the sense of [I. Csiszar, IEEE Trans. Inf. Theory 41, 26-34, (1995)], which provides a direct operational interpretat ion to the quantum $alpha$-relative entropies. We also show that various generalizations of the Holevo capacity, defined in terms of the $alpha$-relative entropies, coincide for the parameter range $alphain (0,2]$, and show an upper bound on the one-shot epsilon-capacity of a classical-quantum channel in terms of these capacities.
The Renyi and Tsallis entropies are discussed as possible alternatives to the Bekenstein-Hawking area-law entropy. It is pointed out how replacing the entropy notion, but not the Hawking temperature and the thermodynamical energy may render the whole black hole thermodynamics inconsistent. The possibility to relate the Renyi and Tsallis entropies with the quantum gravity corrected Bekenstein-Hawking entropy is discussed.
We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition . No translation invariance is assumed. The classification is parameterized by three indices, taking values in a group, which is either trivial, the group of integers, or the group of integers modulo 2, depending on the type of symmetry. The classification is complete in the sense that two walks have the same indices if and only if they can be connected by a norm continuous path along which all the mentioned properties remain valid. Of the three indices, two are related to the asymptotic behaviour far to the right and far to the left, respectively. These are also stable under compact perturbations. The third index is sensitive to those compact perturbations which cannot be contracted to a trivial one. The results apply to the Hamiltonian case as well. In this case all compact perturbations can be contracted, so the third index is not defined. Our classification extends the one known in the translation invariant case, where the asymptotic right and left indices add up to zero, and the third one vanishes, leaving effectively only one independent index. When two translationally invariant bulks with distinct indices are joined, the left and right asymptotic indices of the joined walk are thereby fixed, and there must be eigenvalues at $1$ or $-1$ (bulk-boundary correspondence). Their location is governed by the third index. We also discuss how the theory applies to finite lattices, with suitable homogeneity assumptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا