ترغب بنشر مسار تعليمي؟ اضغط هنا

Smooth Renyi Entropies and the Quantum Information Spectrum

168   0   0.0 ( 0 )
 نشر من قبل Nilanjana Datta
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many of the traditional results in information theory, such as the channel coding theorem or the source coding theorem, are restricted to scenarios where the underlying resources are independent and identically distributed (i.i.d.) over a large number of uses. To overcome this limitation, two different techniques, the information spectrum method and the smooth entropy framework, have been developed independently. They are based on new entropy measures, called spectral entropy rates and smooth entropies, respectively, that generalize Shannon entropy (in the classical case) and von Neumann entropy (in the more general quantum case). Here, we show that the two techniques are closely related. More precisely, the spectral entropy rate can be seen as the asymptotic limit of the smooth entropy. Our results apply to the quantum setting and thus include the classical setting as a special case.



قيم البحث

اقرأ أيضاً

168 - M. Mosonyi , F. Hiai 2009
We show that the quantum $alpha$-relative entropies with parameter $alphain (0,1)$ can be represented as generalized cutoff rates in the sense of [I. Csiszar, IEEE Trans. Inf. Theory 41, 26-34, (1995)], which provides a direct operational interpretat ion to the quantum $alpha$-relative entropies. We also show that various generalizations of the Holevo capacity, defined in terms of the $alpha$-relative entropies, coincide for the parameter range $alphain (0,2]$, and show an upper bound on the one-shot epsilon-capacity of a classical-quantum channel in terms of these capacities.
We show that the new quantum extension of Renyis alpha-relative entropies, introduced recently by Muller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203, (2013), and Wilde, Winter, Yang, Commun. Math. Phys. 331, (2014), have an operational interpretation in the strong converse problem of quantum hypothesis testing. Together with related results for the direct part of quantum hypothesis testing, known as the quantum Hoeffding bound, our result suggests that the operationally relevant definition of the quantum Renyi relative entropies depends on the parameter alpha: for alpha<1, the right choice seems to be the traditional definition, whereas for alpha>1 the right choice is the newly introduced version. As a sideresult, we show that the new Renyi alpha-relative entropies are asymptotically attainable by measurements for alpha>1, and give a new simple proof for their monotonicity under completely positive trace-preserving maps.
The Tsallis and Renyi entropies are important quantities in the information theory, statistics and related fields because the Tsallis entropy is an one parameter generalization of the Shannon entropy and the Renyi entropy includes several useful entr opy measures such as the Shannon entropy, Min-entropy and so on, as special choices of its parameter. On the other hand, the discrete-time quantum walk plays important roles in various applications, for example, quantum speed-up algorithm and universal computation. In this paper, we show limiting behaviors of the Tsallis and Renyi entropies for discrete-time quantum walks on the line which are starting from the origin and defined by arbitrary coin and initial state. The results show that the Tsallis entropy behaves in polynomial order of time with the parameter dependent exponent while the Renyi entropy tends to infinity in logarithmic order of time independent of the choice of the parameter. Moreover, we show the difference between the Renyi entropy and the logarithmic function characterizes by the Renyi entropy of the limit distribution of the quantum walk. In addition, we show an example of asymptotic behavior of the conditional Renyi entropies of the quantum walk.
We construct a new class of entanglement measures by extending the usual definition of Renyi entropy to include a chemical potential. These charged Renyi entropies measure the degree of entanglement in different charge sectors of the theory and are g iven by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFTs with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Renyi entropies in free field theories.
122 - Paul Erker 2014
We study the relation between the quantum conditional mutual information and the quantum $alpha$-Renyi divergences. Considering the totally antisymmetric state we show that it is not possible to attain a proper generalization of the quantum condition al mutual information by optimizing the distance in terms of quantum $alpha$-Renyi divergences over the set of all Markov states. The failure of the approach considered arises from the observation that a small quantum conditional mutual information does not imply that the state is close to a quantum Markov state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا