ﻻ يوجد ملخص باللغة العربية
In an attempt to find a quasi-local measure of quantum entanglement, we introduce the concept of entanglement density in relativistic quantum theories. This density is defined in terms of infinitesimal variations of the region whose entanglement we monitor, and in certain cases can be mapped to the variations of the generating points of the associated domain of dependence. We argue that strong sub-additivity constrains the entanglement density to be positive semi-definite. Examining this density in the holographic context, we map its positivity to a statement of integrated null energy condition in the gravity dual. We further speculate that this may be mapped to a statement analogous to the second law of black hole thermodynamics, for the extremal surface.
The gravitational shock waves have provided crucial insights into entanglement structures of black holes in the AdS/CFT correspondence. Recent progress on the soft hair physics suggests that these developments from holography may also be applicable t
We construct a generalized Smarr formula which could provide a thermodynamic route to derive the covariant field equation of general theories of gravity in dynamic spacetimes. Combining some thermodynamic variables and a new chemical potential conjug
We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Hov{r}ava-Lifshtiz theory with/without detailed balance. It turns out that as in the cases o
We study non-Einstein Bach-flat gravitational instanton solutions that can be regarded as the generalization of the Taub-NUT/Bolt and Eguchi-Hanson solutions of Einstein gravity to conformal gravity. These solutions include non-Einstein spaces which
We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting proble