ترغب بنشر مسار تعليمي؟ اضغط هنا

Horizon Thermodynamics and Gravitational Field Equations in Horava-Lifshitz Gravity

197   0   0.0 ( 0 )
 نشر من قبل Rong-Gen Cai
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Hov{r}ava-Lifshtiz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Hov{r}ava-Lifshtiz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at black hole horizon.



قيم البحث

اقرأ أيضاً

We quantize the two-dimensional projectable Horava-Lifshitz gravity with a bi-local as well as space-like wormhole interaction. The resulting quantum Hamiltonian coincides with the one obtained through summing over all genus in the string field theor y for two-dimensional causal dynamical triangulations. This implies that our wormhole interaction can be interpreted as a splitting or joining interaction of one-dimensional strings.
Horava gravity breaks Lorentz symmetry by introducing a dynamical timelike scalar field (the khronon), which can be used as a preferred time coordinate (thus selecting a preferred space-time foliation). Adopting the khronon as the time coordinate, th e theory is invariant only under time reparametrizations and spatial diffeomorphisms. In the infrared limit, this theory is sometimes referred to as khronometric theory. Here, we explicitly construct a generalization of khronometric theory, which avoids the propagation of Ostrogradski modes as a result of a suitable degeneracy condition (although stability of the latter under radiative corrections remains an open question). While this new theory does not have a general-relativistic limit and does not yield a Friedmann-Robertson-Walker-like cosmology on large scales, it still passes, for suitable choices of its coupling constants, local tests on Earth and in the solar system, as well as gravitational-wave tests. We also comment on the possible usefulness of this theory as a toy model of quantum gravity, as it could be completed in the ultraviolet into a degenerate Horava gravity theory that could be perturbatively renormalizable without imposing any projectability condition.
We present a kind of generalized Vaidya solutions in a generic Lovelock gravity. This solution generalizes the simple case in Gauss-Bonnet gravity reported recently by some authors. We study the thermodynamics of apparent horizon in this generalized Vaidya spacetime. Treating those terms except for the Einstein tensor as an effective energy-momentum tensor in the gravitational field equations, and using the unified first law in Einstein gravity theory, we obtain an entropy expression for the apparent horizon. We also obtain an energy expression of this spacetime, which coincides with the generalized Misner-Sharp energy proposed by Maeda and Nozawa in Lovelock gravity.
We consider the branch of the projectable Horava-Lifshitz model which exhibits ghost instabilities in the low energy limit. It turns out that, due to the Lorentz violating structure of the model and to the presence of a finite strong coupling scale, the vacuum decay rate into photons is tiny in a wide range of phenomenologically acceptable parameters. The strong coupling scale, understood as a cutoff on ghosts spatial momenta, can be raised up to $Lambda sim 10$ TeV. At lower momenta, the projectable Horava-Lifshitz gravity is equivalent to General Relativity supplemented by a fluid with a small positive sound speed squared ($10^{-42}lesssim$) $c^2_s lesssim 10^{-20}$, that could be a promising candidate for the Dark Matter. Despite these advantages, the unavoidable presence of the strong coupling obscures the implementation of the original Horavas proposal on quantum gravity. Apart from the Horava-Lifshitz model, conclusions of the present work hold also for the mimetic matter scenario, where the analogue of the projectability condition is achieved by a non-invertible conformal transformation of the metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا