ﻻ يوجد ملخص باللغة العربية
Wet-lab experiments, in which the dynamics within living cells are observed, are usually costly and time consuming. This is particularly true if single-cell measurements are obtained using experimental techniques such as flow-cytometry or fluorescence microscopy. It is therefore important to optimize experiments with respect to the information they provide about the system. In this paper we make a priori predictions of the amount of information that can be obtained from measurements. We focus on the case where the measurements are made to estimate parameters of a stochastic model of the underlying biochemical reactions. We propose a numerical scheme to approximate the Fisher information of future experiments at different observation time points and determine optimal observation time points. To illustrate the usefulness of our approach, we apply our method to two interesting case studies.
Stochastic reaction networks are a fundamental model to describe interactions between species where random fluctuations are relevant. The master equation provides the evolution of the probability distribution across the discrete state space consistin
This is a short review of two common approximations in stochastic chemical and biochemical kinetics. It will appear as Chapter 6 in the book Quantitative Biology: Theory, Computational Methods and Examples of Models edited by Brian Munsky, Lev Tsimri
Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola modell
In a well-stirred system undergoing chemical reactions, fluctuations in the reaction propensities are approximately captured by the corresponding chemical Langevin equation. Within this context, we discuss in this work how the Kramers escape theory c
We investigate the protein expression pattern of the lamB gene in Escherichia coli LE392. The gene product LamB is an important membrane protein for maltose transport into cells but it is also exploited by bacteriophage lambda for infection. Although