ﻻ يوجد ملخص باللغة العربية
Stochastic reaction networks are a fundamental model to describe interactions between species where random fluctuations are relevant. The master equation provides the evolution of the probability distribution across the discrete state space consisting of vectors of population counts for each species. However, since its exact solution is often elusive, several analytical approximations have been proposed. The deterministic rate equation (DRE) gives a macroscopic approximation as a compact system of differential equations that estimate the average populations for each species, but it may be inaccurate in the case of nonlinear interaction dynamics. Here we propose finite state expansion (FSE), an analytical method mediating between the microscopic and the macroscopic interpretations of a stochastic reaction network by coupling the master equation dynamics of a chosen subset of the discrete state space with the mean population dynamics of the DRE. An algorithm translates a network into an expanded one where each discrete state is represented as a further distinct species. This translation exactly preserves the stochastic dynamics, but the DRE of the expanded network can be interpreted as a correction to the original one. The effectiveness of FSE is demonstrated in models that challenge state-of-the-art techniques due to intrinsic noise, multi-scale populations, and multi-stability.
Wet-lab experiments, in which the dynamics within living cells are observed, are usually costly and time consuming. This is particularly true if single-cell measurements are obtained using experimental techniques such as flow-cytometry or fluorescenc
Chemical reaction networks (CRNs) are fundamental computational models used to study the behavior of chemical reactions in well-mixed solutions. They have been used extensively to model a broad range of biological systems, and are primarily used when
This is a short review of two common approximations in stochastic chemical and biochemical kinetics. It will appear as Chapter 6 in the book Quantitative Biology: Theory, Computational Methods and Examples of Models edited by Brian Munsky, Lev Tsimri
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dim
Randomness is an unavoidable feature of the intracellular environment due to chemical reactants being present in low copy number. That phenomenon, predicted by Delbruck long ago cite{delbruck40}, has been detected in both prokaryotic cite{elowitz02,c