ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractional Edgeworth Expansion: Corrections to the Gaussian-Levy Central Limit Theorem

232   0   0.0 ( 0 )
 نشر من قبل David A. Kessler
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we generalize the classical Edgeworth expansion for the probability density function (PDF) of sums of a finite number of symmetric independent identically distributed random variables with a finite variance to sums of variables with an infinite variance which converge by the generalized central limit theorem to a Levy $alpha$-stable density function. Our correction may be written by means of a series of fractional derivatives of the Levy and the conjugate Levy PDFs. This series expansion is general and applies also to the Gaussian regime. To describe the terms in the series expansion, we introduce a new family of special functions and briefly discuss their properties. We implement our generalization to the distribution of the momentum for atoms undergoing Sisyphus cooling, and show the improvement of our leading order approximation compared to previous approximations. In vicinity of the transition between L{e}vy and Gauss behaviors, convergence to asymptotic results slows down.



قيم البحث

اقرأ أيضاً

368 - Pengbo Xu , Weihua Deng , 2019
Integral transform method (Fourier or Laplace transform, etc) is more often effective to do the theoretical analysis for the stochastic processes. However, for the time-space coupled cases, e.g., Levy walk or nonlinear cases, integral transform metho d may fail to be so strong or even do not work again. Here we provide Hermite polynomial expansion approach, being complementary to integral transform method. Some statistical observables of general Levy walks are calculated by the Hermite polynomial expansion approach, and the comparisons are made when both the integral transform method and the newly introduced approach work well.
The stochastic solution with Gaussian stationary increments is establihsed for the symmetric space-time fractional diffusion equation when $0 < beta < alpha le 2$, where $0 < beta le 1$ and $0 < alpha le 2$ are the fractional derivation orders in tim e and space, respectively. This solution is provided by imposing the identity between two probability density functions resulting (i) from a new integral representation formula of the fundamental solution of the symmetric space-time fractional diffusion equation and (ii) from the product of two independent random variables. This is an alternative method with respect to previous approaches such as the scaling limit of the continuos time random walk, the parametric subordination and the subordinated Langevin equation. A new integral representation formula for the fundamental solution of the space-time fractional diffusion equation is firstly derived. It is then shown that, in the symmetric case, a stochastic solution can be obtained by a Gaussian process with stationary increments and with a random wideness scale variable distributed according to an arrangement of two extremal Levy stable densities. This stochastic solution is self-similar with stationary increments and uniquely defined in a statistical sense by the mean and the covariance structure. Numerical simulations are carried out by choosing as Gaussian process the fractional Brownian motion. Sample paths and probability densities functions are shown to be in agreement with the fundamental solution of the symmetric space-time fractional diffusion equation.
Under the Kolmogorov--Smirnov metric, an upper bound on the rate of convergence to the Gaussian distribution is obtained for linear statistics of the matrix ensembles in the case of the Gaussian, Laguerre, and Jacobi weights. The main lemma gives an estimate for the characteristic functions of the linear statistics; this estimate is uniform over the growing interval. The proof of the lemma relies on the Riemann--Hilbert approach.
We consider a class of interacting particle systems with values in $[0,8)^{zd}$, of which the binary contact path process is an example. For $d ge 3$ and under a certain square integrability condition on the total number of the particles, we prove a central limit theorem for the density of the particles, together with upper bounds for the density of the most populated site and the replica overlap.
328 - Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا