ترغب بنشر مسار تعليمي؟ اضغط هنا

Central Limit Theorem for a Class of Linear Systems

176   0   0.0 ( 0 )
 نشر من قبل Nobuo Yoshida
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a class of interacting particle systems with values in $[0,8)^{zd}$, of which the binary contact path process is an example. For $d ge 3$ and under a certain square integrability condition on the total number of the particles, we prove a central limit theorem for the density of the particles, together with upper bounds for the density of the most populated site and the replica overlap.



قيم البحث

اقرأ أيضاً

We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. We remark that the diffusive scaling limit proven in our previous work [Nagahata, Y., Yoshida, N.: Central Limit Theorem for a Class of Linear Systems, Electron. J. Probab. Vol. 14, No. 34, 960--977. (2009)] can be extended to wider class of models so that it covers the cases of potlatch/smoothing processes.
We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. The class contains examples such as binary contact path process and potlatch process. We show the e quivalence between the slow population growth and localization property that the time integral of the replica overlap diverges. We also prove, under reasonable assumptions, a localization property in a stronger form that the spatial distribution of the population does not decay uniformly in space.
328 - Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
We define a multi-group version of the mean-field spin model, also called Curie-Weiss model. It is known that, in the high temperature regime of this model, a central limit theorem holds for the vector of suitably scaled group magnetisations, that is the sum of spins belonging to each group. In this article, we prove a local central limit theorem for the group magnetisations in the high temperature regime.
Under the Kolmogorov--Smirnov metric, an upper bound on the rate of convergence to the Gaussian distribution is obtained for linear statistics of the matrix ensembles in the case of the Gaussian, Laguerre, and Jacobi weights. The main lemma gives an estimate for the characteristic functions of the linear statistics; this estimate is uniform over the growing interval. The proof of the lemma relies on the Riemann--Hilbert approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا