ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotropy constraints on powerful sources of ultrahigh-energy cosmic rays at $10^{19}$ eV

119   0   0.0 ( 0 )
 نشر من قبل Hajime Takami
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anisotropy in the arrival direction distribution of ultrahigh-energy cosmic rays (UHECRs) produced by powerful sources is numerically evaluated. We show that, taking account of the Galactic magnetic field, nondetection of significant anisotropy at $approx 10^{19}$ eV at present and in future experiments imposes general upper limits on UHECR proton luminosity of steady sources as a function of source redshifts. The upper limits constrain the existence of typical steady sources in the local universe and limit the local density of $10^{19}$ eV UHECR sources to be $gtrsim 10^{-3}$ Mpc$^{-3},$ assuming average intergalactic magnetic fields less than $10^{-9}$ G. This isotropy, which is stronger than measured at the highest energies, may indicate the transient generation of UHECRs. Our anisotropy calculations are applied for extreme high-frequency-peaked BL Lac objects 1ES 0229+200, 1ES 1101-232, and 1ES 0347-121, to test the UHECR-induced cascade model, in which beamed UHECR protons generate TeV radiation in transit from sources. While the magnetic-field structure surrounding the sources affects the required absolute cosmic-ray luminosity of the blazars, the magnetic-field structure surrounding the Milky Way directly affects the observed anisotropy. If both of the magnetic fields are weak enough, significant UHECR anisotropy from these blazars should be detectable by the Pierre Auger Observatory unless the maximum energy of UHECR protons is well below $10^{19}$ eV. Furthermore, if these are the sources of UHECRs above $10^{19}$ eV, a local magnetic structure surrounding the Milky Way is needed to explain the observed isotropy at $sim 10^{19}$ eV, which may be incompatible with large magnetic structures around all galaxies for the UHECR-induced cascade model to work with reasonable jet powers.



قيم البحث

اقرأ أيضاً

This is a review of the most resent results from the investigation of the Ultrahigh Energy Cosmic Rays, particles of energy exceeding 10$^{18}$ eV. After a general introduction to the topic and a brief review of the lower energy cosmic rays and the d etection methods, the two most recent experiments, the High Resolution Flys Eye (HiRes) and the Southern Auger Observatory are described. We then concentrate on the results from these two experiments on the cosmic ray energy spectrum, the chemical composition of these cosmic rays and on the searches for their sources. We conclude with a brief analysis of the controversies in these results and the projects in development and construction that can help solve the remaining problems with these particles.
171 - Denis Allard 2011
In this paper we review the extragalactic propagation of ultrahigh energy cosmic-rays (UHECR). We present the different energy loss processes of protons and nuclei, and their expected influence on energy evolution of the UHECR spectrum and compositio n. We discuss the possible implications of the recent composition analyses provided by the Pierre Auger Observatory. The influence of extragalactic magnetic fields and possible departures from the rectilinear case are also mentioned as well as the production of secondary cosmogenic neutrinos and photons and the constraints their observation would imply for the UHECRs origin. Finally, we conclude by briefly discussing the relevance of a multi messenger approach for solving the mystery of UHECRs.
Data of Pierre Auger Observatory show a proton-dominated chemical composition of ultrahigh-energy cosmic rays spectrum at (1 - 3) EeV and a steadily heavier composition with energy increasing. In order to explain this feature we assume that (1 - 3) E eV protons are extragalactic and derive their maximum acceleration energy, E_p^{max} simeq 4 EeV, compatible with both the spectrum and the composition. We also assume the rigidity-dependent acceleration mechanism of heavier nuclei, E_A^{max} = Z x E_p^{max}. The proposed model has rather disappointing consequences: i) no pion photo-production on CMB photons in extragalactic space and hence ii) no high-energy cosmogenic neutrino fluxes; iii) no GZK-cutoff in the spectrum; iv) no correlation with nearby sources due to nuclei deflection in the galactic magnetic fields up to highest energies.
78 - S. Buitink 2016
Cosmic rays are the highest energy particles found in nature. Measurements of the mass composition of cosmic rays between 10^{17} eV and 10^{18} eV are essential to understand whether this energy range is dominated by Galactic or extragalactic source s. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate cascades of secondary particles (air showers) in the atmosphere and their masses are inferred from measurements of the atmospheric depth of the shower maximum, Xmax, or the composition of shower particles reaching the ground. Current measurements suffer from either low precision, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique, suitable for determination of Xmax with a duty cycle of in principle nearly 100%. The radiation is generated by the separation of relativistic charged particles in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean precision of 16 g/cm^2 between 10^{17}-10^{17.5} eV. Because of the high resolution in $Xmax we can determine the mass spectrum and find a mixed composition, containing a light mass fraction of ~80%. Unless the extragalactic component becomes significant already below 10^{17.5} eV, our measurements indicate an additional Galactic component dominating at this energy range.
There are some discrepancies in the results on energy spectrum from Yakutsk, AGASA, and HiRes experiments. In this work differential energy spectrum of primary cosmic rays based on the Yakutsk EAS Array data is presented. For the largest events value s of $S_{600}$ and axes coordinates have been obtained using revised lateral distribution function. Simulation of converters response at large distances showed no considerable underestimation of particle density. Complex shape of spectrum in region of $E > 10^{17}$ eV is confirmed. After adjustment of parameters and additional exposition at the Yakutsk array there are three events with energy $E > 10^{20}$ eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا