ﻻ يوجد ملخص باللغة العربية
Cosmic rays are the highest energy particles found in nature. Measurements of the mass composition of cosmic rays between 10^{17} eV and 10^{18} eV are essential to understand whether this energy range is dominated by Galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate cascades of secondary particles (air showers) in the atmosphere and their masses are inferred from measurements of the atmospheric depth of the shower maximum, Xmax, or the composition of shower particles reaching the ground. Current measurements suffer from either low precision, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique, suitable for determination of Xmax with a duty cycle of in principle nearly 100%. The radiation is generated by the separation of relativistic charged particles in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean precision of 16 g/cm^2 between 10^{17}-10^{17.5} eV. Because of the high resolution in $Xmax we can determine the mass spectrum and find a mixed composition, containing a light mass fraction of ~80%. Unless the extragalactic component becomes significant already below 10^{17.5} eV, our measurements indicate an additional Galactic component dominating at this energy range.
A spectrum of cosmic rays within energy range 10^15 - 3x10^17 eV was derived from the data of the small Cherenkov setup, which is a part of the Yakutsk complex EAS array. In this, work a new series of observation is covered. These observations lasted
The average mass composition of cosmic rays with primary energies between $10^{17}$eV and $10^{18}$eV has been studied using a hybrid detector consisting of the High Resolution Flys Eye (HiRes) prototype and the MIA muon array. Measurements have been
There are some discrepancies in the results on energy spectrum from Yakutsk, AGASA, and HiRes experiments. In this work differential energy spectrum of primary cosmic rays based on the Yakutsk EAS Array data is presented. For the largest events value
Results of the search for $sim (10^{16} - 10^{17.5})$ eV primary cosmic-ray photons with the data of the Moscow State University (MSU) Extensive Air Shower (EAS) array are reported. The full-scale reanalysis of the data with modern simulations of the
The events of multiple neutron production under 2000g/cm$^2$ thick rock absorber were studied at the Tien~Shan mountain cosmic ray station, at the altitude of 3340m above the sea level. From comparison of the experimental and Geant4 simulated neutron