ترغب بنشر مسار تعليمي؟ اضغط هنا

An exponent tunable network model for reproducing density driven superlinear relation

124   0   0.0 ( 0 )
 نشر من قبل Liang Gao Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous works have shown the universality of allometric scalings under density and total value at city level, but our understanding about the size effects of regions on them is still poor. Here, we revisit the scaling relations between gross domestic production (GDP) and population (POP) under total and density value. We first reveal that the superlinear scaling is a general feature under density value crossing different regions. The scaling exponent $beta$ under density value falls into the range $(1.0, 2.0]$, which unexpectedly goes beyond the range observed by Pan et al. (Nat. Commun. vol. 4, p. 1961 (2013)). To deal with the wider range, we propose a network model based on 2D lattice space with the spatial correlation factor $alpha$ as parameter. Numerical experiments prove that the generated scaling exponent $beta$ in our model is fully tunable by the spatial correlation factor $alpha$. We conjecture that our model provides a general platform for extensive urban and regional studies.



قيم البحث

اقرأ أيضاً

High skill labour is an important factor underpinning the competitive advantage of modern economies. Therefore, attracting and retaining scientists has become a major concern for migration policy. In this work, we study the migration of scientists on a global scale, by combining two large data sets covering the publications of 3.5 Mio scientists over 60 years. We analyse their geographical distances moved for a new affiliation and their age when moving, this way reconstructing their geographical career paths. These paths are used to derive the world network of scientists mobility between cities and to analyse its topological properties. We further develop and calibrate an agent-based model, such that it reproduces the empirical findings both at the level of scientists and of the global network. Our model takes into account that the academic hiring process is largely demand-driven and demonstrates that the probability of scientists to relocate decreases both with age and with distance. Our results allow interpreting the model assumptions as micro-based decision rules that can explain the observed mobility patterns of scientists.
Given the rapidly evolving landscape of linguistic prevalence, whereby a majority of the worlds existing languages are dying out in favor of the adoption of a comparatively fewer set of languages, the factors behind this phenomenon has been the subje ct of vigorous research. The majority of approaches investigate the temporal evolution of two competing languages in the form of differential equations describing their behavior at large scale. In contrast, relatively few consider the spatial dimension of the problem. Furthermore while much attention has focused on the phenomena of language shift---the adoption of majority languages in lieu of minority ones---relatively less light has been shed on linguistic coexistence, where two or more languages persist in a geographically contiguous region. Here, we study the geographical component of language spread on a discrete medium to monitor the dispersal of language species at a microscopic level. Language dynamics is modeled through a reaction-diffusion system that occurs on a heterogeneous network of contacts based on population flows between urban centers. We show that our framework accurately reproduces empirical linguistic trends driven by a combination of the Turing instability, a mechanism for spontaneous pattern-formation applicable to many natural systems, the heterogeneity of the contact network, and the asymmetries in how people perceive the status of a language. We demonstrate the robustness of our formulation on two datasets corresponding to linguistic coexistence in northern Spain and southern Austria.
The preferential attachment (PA) process is a popular theory for explaining network power-law degree distributions. In PA, the probability that a new vertex adds an edge to an existing vertex depends on the connectivity of the target vertex. In real- world networks, however, each vertex may have asymmetric accessibility to information. Here we address this issue using a new network-generation mechanism that incorporates asymmetric accessibility to upstream and downstream information. We show that this asymmetric information accessibility directly affects the power-law exponent, producing a broad range of values that are consistent with observations. Our findings shed new light on the possible mechanisms in three important real-world networks: a citation network, a hyperlink network, and an online social network.
Successfully integrating newcomers into native communities has become a key issue for policy makers, as the growing number of migrants has brought cultural diversity, new skills, and at times, societal tensions to receiving countries. We develop an a gent-based network model to study interacting hosts and guests and identify the conditions under which cooperative/integrated or uncooperative/segregated societies arise. Players are assumed to seek socioeconomic prosperity through game theoretic rules that shift network links, and cultural acceptance through opinion dynamics. We find that the main predictor of integration under given initial conditions is the timescale associated with cultural adjustment relative to social link remodeling, for both guests and hosts. Fast cultural adjustment results in cooperation and the establishment of host-guest connections that are sustained over long times. Conversely, fast social link remodeling leads to the irreversible formation of isolated enclaves, as migrants and natives optimize their socioeconomic gains through in-group connections. We discuss how migrant population sizes and increasing socioeconomic rewards for host-guest interactions, through governmental incentives or by admitting migrants with highly desirable skills, may affect the overall immigrant experience.
Based on a theoretical model for opinion spreading on a network, through avalanches, the effect of external field is now considered, by using methods from non-equilibrium statistical mechanics. The original part contains the implementation that the a valanche is only triggered when a local variable (a so called awareness) reaches and goes above a threshold. The dynamical rules are constrained to be as simple as possible, in order to sort out the basic features, though more elaborated variants are proposed. Several results are obtained for a Erdos-Renyi network and interpreted through simple analytical laws, scale free or logistic map-like, i.e., (i) the sizes, durations, and number of avalanches, including the respective distributions, (ii) the number of times the external field is applied to one possible node before all nodes are found to be above the threshold, (iii) the number of nodes still below the threshold and the number of hot nodes (close to threshold) at each time step.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا