ﻻ يوجد ملخص باللغة العربية
We consider the distribution of normalized Frobenius traces for two families of genus 3 hyperelliptic curves over Q that have large automorphism groups: y^2=x^8+c and y^2=x^7-cx with c in Q*. We give efficient algorithms to compute the trace of Frobenius for curves in these families at primes of good reduction. Using data generated by these algorithms, we obtain a heuristic description of the Sato-Tate groups that arise, both generically and for particular values of c. We then prove that these heuristic descriptions are correct by explicitly computing the Sato-Tate groups via the correspondence between Sato-Tate groups and Galois endomorphism types.
Given an abelian variety over a number field, its Sato-Tate group is a compact Lie group which conjecturally controls the distribution of Euler factors of the L-function of the abelian variety. It was previously shown by Fite, Kedlaya, Rotger, and Su
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences
We establish the group-theoretic classification of Sato-Tate groups of self-dual motives of weight 3 with rational coefficients and Hodge numbers h^{3,0} = h^{2,1} = h^{1,2} = h^{0,3} = 1. We then describe families of motives that realize some of the
Spin correlations of the frustrated pyrochlore oxide Tb$_{2+x}$Ti$_{2-x}$O$_{7+y}$ have been investigated by using inelastic neutron scattering on single crystalline samples ($x=-0.007, 0.000,$ and $0.003$), which have the putative quantum-spin-liqui
Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z}, ngeq 2, xyz eq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the p