ﻻ يوجد ملخص باللغة العربية
For $dge 3$ we construct a new coupling of the trace left by a random walk on a large $d$-dimensional discrete torus with the random interlacements on $mathbb Z^d$. This coupling has the advantage of working up to macroscopic subsets of the torus. As an application, we show a sharp phase transition for the diameter of the component of the vacant set on the torus containing a given point. The threshold where this phase transition takes place coincides with the critical value $u_*(d)$ of random interlacements on $mathbb Z^d$. Our main tool is a variant of the soft-local time coupling technique of [PT12].
We consider the model of random interlacements on transient graphs, which was first introduced by Sznitman [Ann. of Math. (2) (2010) 171 2039-2087] for the special case of ${mathbb{Z}}^d$ (with $dgeq3$). In Sznitman [Ann. of Math. (2) (2010) 171 2039
Let $mathbb{T}^d_N$, $dge 2$, be the discrete $d$-dimensional torus with $N^d$ points. Place a particle at each site of $mathbb{T}^d_N$ and let them evolve as independent, nearest-neighbor, symmetric, continuous-time random walks. Each time two parti
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
We introduce the model of two-dimensional continuous random interlacements, which is constructed using the Brownian trajectories conditioned on not hitting a fixed set (usually, a disk). This model yields the local picture of Wiener sausage on the to
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w