ﻻ يوجد ملخص باللغة العربية
The method of quasi-optimal weights is applied to constructing (quasi-)optimal criteria for various anomalous contributions in experimental spectra. Anomalies in the spectra could indicate physics beyond the Standard Model (additional interactions and neutrino flavours, Lorenz violation etc.). In particular the cumulative tritium $beta$-decay spectrum (for instance, in Troitsk-$ u$-mass, Mainz Neutrino Mass and KATRIN experiments) is analysed using the derived special criteria. Using the power functions we show that the derived quasi-optimal criteria are efficient statistical instruments for detecting the anomalous contributions in the spectra.
The objective of the Karlsruhe Tritium Neutrino (KATRIN) experiment is to determine the effective electron neutrino mass $m( u_text{e})$ with an unprecedented sensitivity of $0.2,text{eV}$ (90% C.L.) by precision electron spectroscopy close to the en
The beta decay of tritium in the form of molecular TT is the basis of sensitive experiments to measure neutrino mass. The final-state electronic, vibrational, and rotational excitations modify the beta spectrum significantly, and are obtained from th
We consider tritium beta decay with additional emission of light pseudoscalar or vector bosons coupling to electrons or neutrinos. The electron energy spectrum for all cases is evaluated and shown to be well estimated by approximated analytical expre
The statistical methods used in deriving physics results in the BaBar collaboration are reviewed, with especial emphasis on areas where practice is not uniform in particle physics.
Modern analysis of high energy physics (HEP) data needs advanced statistical tools to separate signal from background. A C++ package has been implemented to provide such tools for the HEP community. The package includes linear and quadratic discrimin