ترغب بنشر مسار تعليمي؟ اضغط هنا

Tritium beta decay with additional emission of new light bosons

42   0   0.0 ( 0 )
 نشر من قبل Werner Rodejohann
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider tritium beta decay with additional emission of light pseudoscalar or vector bosons coupling to electrons or neutrinos. The electron energy spectrum for all cases is evaluated and shown to be well estimated by approximated analytical expressions. We give the statistical sensitivity of KATRIN to the mass and coupling of the new bosons, both in the standard setup of the experiment as well as for future modifications in which the full energy spectrum of tritium decay is accessible.



قيم البحث

اقرأ أيضاً

Past and current direct neutrino mass experiments set limits on the so-called effective neutrino mass, which is an incoherent sum of neutrino masses and lepton mixing matrix elements. The electron energy spectrum which neglects the relativistic and n uclear recoil effects is often assumed. Alternative definitions of effective masses exist, and an exact relativistic spectrum is calculable. We quantitatively compare the validity of those different approximations as function of energy resolution and exposure in view of tritium beta decays in the KATRIN, Project 8 and PTOLEMY experiments. Furthermore, adopting the Bayesian approach, we present the posterior distributions of the effective neutrino mass by including current experimental information from neutrino oscillations, beta decay, neutrinoless double-beta decay and cosmological observations. Both linear and logarithmic priors for the smallest neutrino mass are assumed.
203 - E. W. Otten , C. Weinheimer 2009
The paper reviews recent experiments on tritium beta spectroscopy searching for the absolute value of the electron neutrino mass $m( u_e)$. By use of dedicated electrostatic filters with high acceptance and resolution, the uncertainty on the observab le $m^2( u_e)$ has been pushed down to about 3 eV$^2$. The new upper limit of the mass is $m( u_e) < 2$ eV at 95% C.L. In view of erroneous and unphysical mass results obtained by some earlier experiments in beta decay, particular attention is paid to systematic effects. The mass limit is discussed in the context of current neutrino research in particle- and astrophysics. A preview is given of the next generation of beta spectroscopy experiments currently under development and construction; they aim at lowering the $m^2( u_e)$-uncertainty by another factor of 100, reaching a sensitivity limit $m( u_e) < 0.2$ eV.
The beta decay of tritium in the form of molecular TT is the basis of sensitive experiments to measure neutrino mass. The final-state electronic, vibrational, and rotational excitations modify the beta spectrum significantly, and are obtained from th eory. We report measurements of the branching ratios to specific ionization states for the isotopolog HT. Two earlier, concordant measurements gave branching ratios of HT to the bound HHe$^+$ ion of 89.5% and 93.2%, in sharp disagreement with the theoretical prediction of 55-57%, raising concerns about the theorys reliability in neutrino mass experiments. Our result, 56.5(6)%, is compatible with the theoretical expectation and disagrees strongly with the previous measurements.
285 - C. H. Jang , B. J. Kim , Y. J. Ko 2018
Recent neutrino experiment results show a preference for the normal neutrino mass ordering. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in the three-neutrino framework based on the normal ordering. This research is intended to show that it is possible to find a neutrinoless double beta decay signal even with normal ordered neutrino masses. We propose the existence of a light sterile neutrino as a solution to the higher effective mass of the electron neutrino expected by the current experiments. A few short-baseline oscillation experiments gave rise to a limit on the mass of the sterile neutrino and its mixing with the lightest neutrino. We demonstrate that the results of neutrinoless double beta decays can also narrow down the range of the mass and the mixing angle of the light sterile neutrino.
88 - G.J. Stephenson , Jr. 2000
The interference of charge-changing interactions, weaker than the V-A Standard Model (SM) interaction and having a different Lorentz structure, with that SM interaction, can, in principle, produce effects near the end point of the Tritium beta decay spectrum which are of a different character from those produced by the purely kinematic effect of neutrino mass expected in the simplest extension of the SM. We show that the existence of more than one mass eigenstate can lead to interference effects at the end point that are stronger than those occurring over the entire spectrum. We discuss these effects both for the special case of Dirac neutrinos and the more general case of Majorana neutrinos and show that, for the present precision of the experiments, one formula should suffice to express the interference effects in all cases. Implications for sterile neutrinos are noted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا