ﻻ يوجد ملخص باللغة العربية
We derive a set of isometric fluctuation relations, which constrain the order parameter fluctuations in finite-size systems at equilibrium and in the presence of a broken symmetry. These relations are exact and should apply generally to many condensed-matter physics systems. Here, we establish these relations for magnetic systems and nematic liquid crystals in a symmetry-breaking external field, and we illustrate them on the Curie-Weiss and the $XY$ models. Our relations also have implications for spontaneous symmetry breaking, which are discussed.
Fluctuation-dissipation relations or theorems (FDTs) are fundamental for statistical physics and can be rigorously derived for equilibrium systems. Their applicability to non-equilibrium systems is, however, debated. Here, we simulate an active micro
We provide numerical evidence that the Onsager symmetry remains valid for systems subject to a spatially dependent magnetic field, in spite of the broken time-reversal symmetry. In addition, for the simplest case in which the field strength varies on
We study the effects of the finite number of experimental data on the computation of a generalized fluctuation-dissipation relation around a nonequilibrium steady state of a Brownian particle in a toroidal optical trap. We show that the finite sampli
We study Fluctuation Relations (FRs) for dynamics that are anomalous, in the sense that the diffusive properties strongly deviate from the ones of standard Brownian motion. We first briefly review the concept of transient work FRs for stochastic dyna
We unveil the universal (model-independent) symmetry satisfied by Schwinger-Keldysh quantum field theories whenever they describe equilibrium dynamics. This is made possible by a generalization of the Schwinger-Keldysh path-integral formalism in whic