ﻻ يوجد ملخص باللغة العربية
We study Fluctuation Relations (FRs) for dynamics that are anomalous, in the sense that the diffusive properties strongly deviate from the ones of standard Brownian motion. We first briefly review the concept of transient work FRs for stochastic dynamics modeled by the ordinary Langevin equation. We then introduce three generic types of dynamics generating anomalous diffusion: Levy flights, long-time correlated Gaussian stochastic processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the work probability distributions in the simple nonequilibrium situation of a particle subject to a constant force. This allows us to check the transient FR for anomalous dynamics. We find a new form of FRs, which is intimately related to the validity of fluctuation-dissipation relations. Analogous results are obtained for a particle in a harmonic potential dragged by a constant force. We argue that these findings are important for understanding fluctuations in experimentally accessible systems. As an example, we discuss the anomalous dynamics of biological cell migration both in equilibrium and in nonequilibrium under chemical gradients.
Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations. As prototypes we study three variants of a generic time-fr
We consider the application of fluctuation relations to the dynamics of coarse-grained systems, as might arise in a hypothetical experiment in which a system is monitored with a low-resolution measuring apparatus. We analyze a stochastic, Markovian j
The fluctuation relations have received considerable attention since their emergence and development in the 1990s. We present a summary of the main results and suggest ways to interpret this material. Starting with a consideration of the under-determ
A stochastic dynamics has a natural decomposition into a drift capturing mean rate of change and a martingale increment capturing randomness. They are two statistically uncorrelated, but not necessarily independent mechanisms contributing to the over
Previously, we have derived a generalization of the canonical fluctuation relation between heat capacity and energy fluctuations $C=beta^{2}<delta U^{2}>$, which is able to describe the existence of macrostates with negative heat capacities $C<0$. In