ﻻ يوجد ملخص باللغة العربية
In the current paper we obtain discrepancy estimates in exponential Orlicz and BMO spaces in arbitrary dimension $d ge 3$. In particular, we use dyadic harmonic analysis to prove that for the so-called digital nets of order $2$ the BMO${}^d$ and $exp big( L^{2/(d-1)} big)$ norms of the discrepancy function are bounded above by $(log N)^{frac{d-1}{2}}$. The latter bound has been recently conjectured in several papers and is consistent with the best known low-discrepancy constructions. Such estimates play an important role as an intermediate step between the well-understood $L_p$ bounds and the notorious open problem of finding the precise $L_infty$ asymptotics of the discrepancy function in higher dimensions, which is still elusive.
We prove that in all dimensions n at least 3, for every integer N there exists a distribution of points of cardinality $ N$, for which the associated discrepancy function D_N satisfies the estimate an estimate, of sharp growth rate in N, in the expon
In this paper the necessary and sufficient conditions were given for Orlicz-Lorentz function space endowed with the Orlicz norm having non-squareness and local uniform non-squareness.
The approximation of functions in Orlicz space by multivariate operators on simplex is considered. The convergence rate is given by using modulus of smoothness.
For a Young function $phi$ and a locally compact second countable group $G,$ let $L^phi(G)$ denote the Orlicz space on $G.$ In this article, we present a necessary and sufficient condition for the topological transitivity of a sequence of cosine oper
Let A_N be an N-point distribution in the unit square in the Euclidean plane. We consider the Discrepancy function D_N(x) in two dimensions with respect to rectangles with lower left corner anchored at the origin and upper right corner at the point x