ﻻ يوجد ملخص باللغة العربية
Certain instrumental effects and data reduction anomalies introduce systematic errors in photometric time-series. Detrending algorithms such as the Trend Filtering Algorithm (TFA) (Kov{a}cs et al. 2004) have played a key role in minimizing the effects caused by these systematics. Here we present the results obtained after applying the TFA, Savitszky-Golay (Savitzky & Golay 1964) detrending algorithms and the Box Least Square phase folding algorithm (Kov{a}cs et al. 2002) to the TFRM-PSES data (Fors et al. 2013). Tests performed on this data show that by applying these two filtering methods together, the photometric RMS is on average improved by a factor of 3-4, with better efficiency towards brighter magnitudes, while applying TFA alone yields an improvement of a factor 1-2. As a result of this improvement, we are able to detect and analyze a large number of stars per TFRM-PSES field which present some kind of variability. Also, after porting these algorithms to Python and parallelizing them, we have improved, even for large data samples, the computing performance of the overall detrending+BLS algorithm by a factor of $sim$10 with respect to Kov{a}cs et al. (2004).
exoplanet is a toolkit for probabilistic modeling of astronomical time series data, with a focus on observations of exoplanets, using PyMC3 (Salvatier et al., 2016). PyMC3 is a flexible and high-performance model-building language and inference engin
We present a new framework to detect various types of variable objects within massive astronomical time-series data. Assuming that the dominant population of objects is non-variable, we find outliers from this population by using a non-parametric Bay
The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large datasets. Gaussian Processes are a popular class of models used for this purpose but, since th
In this study we show that standard well-known file compression programs (zlib, bzip2, etc.) are able to forecast real-world time series data well. The strength of our approach is its ability to use a set of data compression algorithms and automatica
JWST transmission and emission spectra will provide invaluable glimpses of transiting exoplanet atmospheres, including possible biosignatures. This promising science from JWST, however, will require exquisite precision and understanding of systematic