ﻻ يوجد ملخص باللغة العربية
A wide array of random graph models have been postulated to understand properties of observed networks. Typically these models have a parameter $t$ and a critical time $t_c$ when a giant component emerges. It is conjectured that for a large class of models, the nature of this emergence is similar to that of the ErdH{o}s-Renyi random graph, in the sense that (a) the sizes of the maximal components in the critical regime scale like $n^{2/3}$, and (b) the structure of the maximal components at criticality (rescaled by $n^{-1/3}$) converges to random fractals. To date, (a) has been proven for a number of models using different techniques. This paper develops a general program for proving (b) that requires three ingredients: (i) in the critical scaling window, components merge approximately like the multiplicative coalescent, (ii) scaling exponents of susceptibility functions are the same as that of the ErdH{o}s-Renyi random graph, and (iii) macroscopic averaging of distances between vertices in the barely subcritical regime. We show that these apply to two fundamental random graph models: the configuration model and inhomogeneous random graphs with a finite ground space. For these models, we also obtain new results for component sizes at criticality and structural properties in the barely subcritical regime.
We consider an inhomogeneous ErdH{o}s-Renyi random graph $G_N$ with vertex set $[N] = {1,dots,N}$ for which the pair of vertices $i,j in [N]$, $i eq j$, is connected by an edge with probability $r(tfrac{i}{N},tfrac{j}{N})$, independently of other pai
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
We develop a quantitative large deviations theory for random Bernoulli tensors. The large deviation principles rest on a decomposition theorem for arbitrary tensors outside a set of tiny measure, in terms of a novel family of norms generalizing the c
We consider a dynamic ErdH{o}s-Renyi random graph (ERRG) on $n$ vertices in which each edge switches on at rate $lambda$ and switches off at rate $mu$, independently of other edges. The focus is on the analysis of the evolution of the associated empi
Very sparse random graphs are known to typically be singular (i.e., have singular adjacency matrix), due to the presence of low-degree dependencies such as isolated vertices and pairs of degree-1 vertices with the same neighbourhood. We prove that th