ﻻ يوجد ملخص باللغة العربية
We present a large magnetodielectric (MD) effect of 65 % at 100 kHz with 5 T field in B-site ordered La2CoMnO6 (LCMO) polycrystalline sample. Frequency and temperature dependent impedance and dielectric studies under magnetic field divulge both intrinsic and extrinsic origins for the observed MD effect. The temperature dependent Raman spectroscopy measurement has shown spin-lattice coupling that supports the intrinsic origin of the observed large MD response in LCMO. Extrinsic contributions to MD response mainly originate from disorder and interface effects; here, we signify this by hole carrier (Sr) doping at the A-site of the ordered LCMO sample. The comparison study has disclosed that with the disorder, the intrinsic polarization due to asymmetric hopping decreases significantly, and the disorder induced transport dominates in both MD and magnetoresistance behaviour with close resemblance.
We have carried out dc magnetization (M), heat-capacity (C) and dielectric studies down to 2K for the compound GdCrTiO5, crystallizing in orthorhombic Pbam structure, in which well-known multiferroics RMn2O5 (R= Rare-earths) form. The points of empha
Intrinsic anomalous Nernst effect (ANE), like its Hall counterpart, is generated by Berry curvature of electrons in solids. Little is known about its response to disorder. In contrast, the link between the amplitude of the ordinary Nernst coefficient
CoSeO$_4$ has a structure consisting of edge-sharing chains of Co$^{2+}$ octahedra which are held together by SeO$_4^{2-}$ tetrahedra via shared oxygen atoms at the edges of the octahedra. DC magnetization measurements indicate a transition to an ord
Topological materials are expected to show distinct transport signatures due to their unique band-inversion character and band-crossing points. However, the intentional modulation of such topological responses by experimentally feasible means is less
Topological materials have recently attracted considerable attention among materials scientists as their properties are predicted to be protected against perturbations such as lattice distortion and chemical substitution. However, any experimental pr