ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications of magnetic and magnetodielectric behavior of GdCrTiO5

113   0   0.0 ( 0 )
 نشر من قبل Tathamay Basu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out dc magnetization (M), heat-capacity (C) and dielectric studies down to 2K for the compound GdCrTiO5, crystallizing in orthorhombic Pbam structure, in which well-known multiferroics RMn2O5 (R= Rare-earths) form. The points of emphasis are: (i) The magnetic ordering temperature of Cr appears to be suppressed compared to that in isostructural Nd counterpart, NdCrTiO5, for which the Neel temperature is about 21 K. This finding on the Gd compound suggests that Nd 4f orbital plays a role on the magnetism of Cr in contrast to a proposal long ago. (ii) Dielectric constant does not exhibit any notable feature below about 30 K in the absence of external magnetic field, but a peak appears and gets stronger with the application of external magnetic fields, supporting the existence of magnetodielectric coupling. (iii) The dielectric anomalies appear even near 100 K, which can be attributed to short-range magnetic-order. We also observe a gain in spectral weight below about 150 K in Raman spectra in the frequency range 150 to 400 cm-1, which could be magnetic in origin supporting short-range magnetic order. It is of interest to explore whether geometrically frustration plays any role on the dielectric properties of this family, as in the case of RMn2O5.



قيم البحث

اقرأ أيضاً

We report the magnetic, heat-capacity, dielectric and magnetodielectric (MDE) behaviour of a Haldane spin-chain compound containing light rare-earth ion, Nd2BaNiO5, in detail, as a function of temperature (T) and magnetic field (H) down to 2 K. In ad dition to the well-known long range antiferromagnetic order setting in at (T_N=) 48 K as indicated in dc magnetization (M), we have observed another magnetic transition near 10 K; this transition appears to be of a glassy-type which vanishes with a marginal application of external magnetic field (even H= 100 Oe). There are corresponding anomalies in dielectric constant as well with variation of T. The isothermal M(H) curves at 2 and 5 K reveal the existence of a magnetic-field induced transition around 90 kOe; the isothermal H-dependent dielectric constant also tracks such a metamagnetic transition. These results illustrate the MDE coupling in this compound. Additionally, we observe a strong frequency dependence of a step in T-dependent dielectric constant with this feature appearing around 25-30 K for the lowest frequency of 1 kHz, far below T_N. This is attributed to interplay between crystal-field effect and exchange interaction between Nd and Ni, which establishes the sensitivity of dielectric measurements to detect such effects. Interestingly enough, the observed dispersions of the T-dependent dielectric constant curves is essentially H-independent in the entire T-range of measurement, despite the existence of MDE coupling, which is in sharp contrast with other heavy rare-earth members in this series.
The spinel-structured lithium manganese oxide (LiMn$_2$O$_4$) is a material currently used as cathode for secondary lithium-ion batteries, but whose properties are not yet fully understood. Here, we report a computational investigation of the inversi on thermodynamics and electronic behaviour of LiMn$_2$O$_4$ derived from spin-polarised density functional theory calculations with a Hubbard Hamiltonian and long-range dispersion corrections (DFT+$U-$D3). Based on the analysis of the configurational free energy, we have elucidated a partially inverse equilibrium cation distribution for the LiMn$_2$O$_4$ spinel. This equilibrium degree of inversion is rationalised in terms of the crystal field stabilisation effects and the difference between the size of the cations. We compare the atomic charges with the oxidation numbers for each degree of inversion. We found segregation of the Mn charge once these ions occupy the tetrahedral and octahedral sites of the spinel. We have obtained the atomic projections of the electronic band structure and density of states, showing that the normal LiMn$_2$O$_4$ has half-metallic properties, while the fully inverse spinel is an insulator. This material is in the ferrimagnetic state for the inverse and partially inverse cation arrangement. The optimised lattice and oxygen parameters, as well as the equilibrium degree of inversion, are in agreement with the available experimental data. The partially inverse equilibrium degree of inversion is important in the interpretation of the lithium ion migration and surface properties of the LiMn$_2$O$_4$ spinel.
Reflection and transmission as a function of temperature have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu$_{2}$OSeO$_{3}$ utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature ($T_{c}sim 60$~K). Assignments to strong far infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature.
CoSeO$_4$ has a structure consisting of edge-sharing chains of Co$^{2+}$ octahedra which are held together by SeO$_4^{2-}$ tetrahedra via shared oxygen atoms at the edges of the octahedra. DC magnetization measurements indicate a transition to an ord ered state below 30 K. Powder neutron diffraction refinements suggest an ordered state with two unique antiferrromagnetic chains within the unit cell. Isothermal magnetization measurements indicate a temperature-dependent field-induced magnetic transition below the ordering temperature. From neutron diffraction, we find this corresponds to a realignment of spins from the canted configuration towards the c-axis. The dielectric constant shows a change in slope at the magnetic ordering temperature as well as a quadratic dependence on the external magnetic field.
We present a large magnetodielectric (MD) effect of 65 % at 100 kHz with 5 T field in B-site ordered La2CoMnO6 (LCMO) polycrystalline sample. Frequency and temperature dependent impedance and dielectric studies under magnetic field divulge both intri nsic and extrinsic origins for the observed MD effect. The temperature dependent Raman spectroscopy measurement has shown spin-lattice coupling that supports the intrinsic origin of the observed large MD response in LCMO. Extrinsic contributions to MD response mainly originate from disorder and interface effects; here, we signify this by hole carrier (Sr) doping at the A-site of the ordered LCMO sample. The comparison study has disclosed that with the disorder, the intrinsic polarization due to asymmetric hopping decreases significantly, and the disorder induced transport dominates in both MD and magnetoresistance behaviour with close resemblance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا