ﻻ يوجد ملخص باللغة العربية
We discuss the non-self-averaging phenomena in the critical point of weakly disordered Ising ferromagnet. In terms of the renormalized replica Ginzburg-Landau Hamiltonian in dimensions D <4, we derive an explicit expression for the probability distribution function (PDF) of the critical free energy fluctuations. In particular, using known fixed-point values for the renormalized coupling parameters, we obtain the universal curve for such PDF in the dimension D=3. It is demonstrated that this function is strongly asymmetric: its left tail is much slower than the right one.
We study sample-to-sample fluctuations in a critical two-dimensional Ising model with quenched random ferromagnetic couplings. Using replica calculations in the renormalization group framework we derive explicit expressions for the probability distri
We present a complementary estimation of the critical exponent $alpha$ of the specific heat of the 5D random-field Ising model from zero-temperature numerical simulations. Our result $alpha = 0.12(2)$ is consistent with the estimation coming from the
The bond-propagation (BP) algorithm for the specific heat of the two dimensional Ising model is developed and that for the internal energy is completed. Using these algorithms, we study the critical internal energy and specific heat of the model on t
The standard phase-ordering process is obtained by quenching a system, like the Ising model, to below the critical point. This is usually done with periodic boundary conditions to insure ergodicity breaking in the low temperature phase. With this arr
The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two