ترغب بنشر مسار تعليمي؟ اضغط هنا

The operator algebra generated by the translation, dilation and multiplication semigroups

158   0   0.0 ( 0 )
 نشر من قبل Stephen C. Power
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The weak operator topology closed operator algebra on $L^2(R)$ generated by the one-parameter semigroups for translation, dilation and multiplication by $exp(ilambda x), lambda geq 0$, is shown to be a reflexive operator algebra, in the sense of Halmos, with invariant subspace lattice equal to a binest. This triple semigroup algebra, $A_{ph}$, is antisymmetric in the sense that $A_{ph} cap A_{ph}^*= CI$, it has a nonzero proper weakly closed ideal generated by the finite-rank operators, and its unitary automorphism group is $R$. Furthermore, the 8 choices of semigroup triples provide 2 unitary equivalence classes of operator algebras, with $A_{ph}$ and $A_{ph}^*$ being chiral representatives.



قيم البحث

اقرأ أيضاً

133 - Delio Mugnolo 2013
We survey some known results about operator semigroup generated by operator matrices with diagonal or coupled domain. These abstract results are applied to the characterization of well-/ill-posedness for a class of evolution equations with dynamic bo undary conditions on domains or metric graphs. In particular, our ill-posedness results on the heat equation with general Wentzell-type boundary conditions complement those previously obtained by, among others, Bandle-von Below-Reichel and Vitillaro-Vazquez.
A higher rank numerical semigroup is a positive cone whose seminormalization is isomorphic to the free abelian semigroup. The corresponding nonselfadjoint semigroup algebras are known to provide examples that answer Arvesons Dilation Problem to the n egative. Here we show that these algebras share the polydisc as the character space in a canonical way. We subsequently use this feature in order to identify higher rank numerical semigroups from the corresponding nonselfadjoint algebras.
111 - O. Dovgoshey 2019
Let $X$ be a nonempty set and $X^{2}$ be the Cartesian square of $X$. Some semigroups of binary relations generated partitions of $X^2$ are studied. In particular, the algebraic structure of semigroups generated by the finest partition of $X^{2}$ and , respectively, by the finest symmetric partition of $X^{2}$ are described.
Evans-Hudson flows are constructed for a class of quantum dynamical semigroups with unbounded generator on UHF algebras, which appeared in cite{Ma}. It is shown that these flows are unital and covariant. Ergodicity of the flows for the semigroups associated with partial states is also discussed.
86 - G.Y. Tsyaputa 2005
Pairwise non-isomorphic semigroups obtained from the finite inverse symmetric semigroup $mathcal{IS}_n ,$ finite symmetric semigroup $mathcal{T}_n$ and bicyclic semigroup by the deformed multiplication proposed by Ljapin are classified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا