ﻻ يوجد ملخص باللغة العربية
Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strenghts of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size $L$ from $Theta(L^{2/3})$ to $Omega(L^{1-epsilon})$ for any $epsilon>0$. We apply our algorithm to decoding $D(mathbb{Z}_d)$ quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the $D(mathbb{Z}_d)$ quantum double models. The parallelized runtime of our algorithm is $text{poly}(log L)$ for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is $O(1)$ for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.
We consider a class of decoding algorithms that are applicable to error correction for both Abelian and non-Abelian anyons. This class includes multiple algorithms that have recently attracted attention, including the Bravyi-Haah RG decoder. They are
The typical model for measurement noise in quantum error correction is to randomly flip the binary measurement outcome. In experiments, measurements yield much richer information - e.g., continuous current values, discrete photon counts - which is th
Consider a stabilizer state on $n$ qudits, each of dimension $D$ with $D$ being a prime or a squarefree integer, divided into three mutually disjoint sets or parts. Generalizing a result of Bravyi et al. [J. Math. Phys. textbf{47}, 062106 (2006)] for
Belief-propagation (BP) decoders play a vital role in modern coding theory, but they are not suitable to decode quantum error-correcting codes because of a unique quantum feature called error degeneracy. Inspired by an exact mapping between BP and de
The efficient validation of quantum devices is critical for emerging technological applications. In a wide class of use-cases the precise engineering of a Hamiltonian is required both for the implementation of gate-based quantum information processin