ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes

334   0   0.0 ( 0 )
 نشر من قبل Ye-Hua Liu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Belief-propagation (BP) decoders play a vital role in modern coding theory, but they are not suitable to decode quantum error-correcting codes because of a unique quantum feature called error degeneracy. Inspired by an exact mapping between BP and deep neural networks, we train neural BP decoders for quantum low-density parity-check (LDPC) codes with a loss function tailored to error degeneracy. Training substantially improves the performance of BP decoders for all families of codes we tested and may solve the degeneracy problem which plagues the decoding of quantum LDPC codes.



قيم البحث

اقرأ أيضاً

Topological quantum error-correcting codes are a promising candidate for building fault-tolerant quantum computers. Decoding topological codes optimally, however, is known to be a computationally hard problem. Various decoders have been proposed that achieve approximately optimal error thresholds. Due to practical constraints, it is not known if there exists an obvious choice for a decoder. In this paper, we introduce a framework which can combine arbitrary decoders for any given code to significantly reduce the logical error rates. We rely on the crucial observation that two different decoding techniques, while possibly having similar logical error rates, can perform differently on the same error syndrome. We use machine learning techniques to assign a given error syndrome to the decoder which is likely to decode it correctly. We apply our framework to an ensemble of Minimum-Weight Perfect Matching (MWPM) and Hard-Decision Re-normalization Group (HDRG) decoders for the surface code in the depolarizing noise model. Our simulations show an improvement of 38.4%, 14.6%, and 7.1% over the pseudo-threshold of MWPM in the instance of distance 5, 7, and 9 codes, respectively. Lastly, we discuss the advantages and limitations of our framework and applicability to other error-correcting codes. Our framework can provide a significant boost to error correction by combining the strengths of various decoders. In particular, it may allow for combining very fast decoders with moderate error-correcting capability to create a very fast ensemble decoder with high error-correcting capability.
141 - Sixia Yu , Qing Chen , C.H. Oh 2007
We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are pot entially more efficient, is not as well understood as that of stabilizer codes. Our graphical approach provides a unified and classical way to construct both stabilizer and nonadditive codes. In particular we have explicitly constructed the optimal ((10,24,3)) code and a family of 1-error detecting nonadditive codes with the highest encoding rate so far. In the case of stabilizer codes a thorough search becomes tangible and we have classified all the extremal stabilizer codes up to 8 qubits.
We introduce a two-stage decimation process to improve the performance of neural belief propagation (NBP), recently introduced by Nachmani et al., for short low-density parity-check (LDPC) codes. In the first stage, we build a list by iterating betwe en a conventional NBP decoder and guessing the least reliable bit. The second stage iterates between a conventional NBP decoder and learned decimation, where we use a neural network to decide the decimation value for each bit. For a (128,64) LDPC code, the proposed NBP with decimation outperforms NBP decoding by 0.75 dB and performs within 1 dB from maximum-likelihood decoding at a block error rate of $10^{-4}$.
We study stabilizer quantum error correcting codes (QECC) generated under hybrid dynamics of local Clifford unitaries and local Pauli measurements in one dimension. Building upon 1) a general formula relating the error-susceptibility of a subregion t o its entanglement properties, and 2) a previously established mapping between entanglement entropies and domain wall free energies of an underlying spin model, we propose a statistical mechanical description of the QECC in terms of entanglement domain walls. Free energies of such domain walls generically feature a leading volume law term coming from its surface energy, and a sub-volume law correction coming from thermodynamic entropies of its transverse fluctuations. These are most easily accounted for by capillary-wave theory of liquid-gas interfaces, which we use as an illustrative tool. We show that the information-theoretic decoupling criterion corresponds to a geometric decoupling of domain walls, which further leads to the identification of the contiguous code distance of the QECC as the crossover length scale at which the energy and entropy of the domain wall are comparable. The contiguous code distance thus diverges with the system size as the subleading entropic term of the free energy, protecting a finite code rate against local undetectable errors. We support these correspondences with numerical evidence, where we find capillary-wave theory describes many qualitative features of the QECC; we also discuss when and why it fails to do so.
In this paper, based on the nonbinary graph state, we present a systematic way of constructing good non-binary quantum codes, both additive and nonadditive, for systems with integer dimensions. With the help of computer search, which results in many interesting codes including some nonadditive codes meeting the Singleton bounds, we are able to construct explicitly four families of optimal codes, namely, $[[6,2,3]]_p$, $[[7,3,3]]_p$, $[[8,2,4]]_p$ and $[[8,4,3]]_p$ for any odd dimension $p$ and a family of nonadditive code $((5,p,3))_p$ for arbitrary $p>3$. In the case of composite numbers as dimensions, we also construct a family of stabilizer codes $((6,2cdot p^2,3))_{2p}$ for odd $p$, whose coding subspace is {em not} of a dimension that is a power of the dimension of the physical subsystem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا