ﻻ يوجد ملخص باللغة العربية
Recently, utilizing renewable energy for wireless system has attracted extensive attention. However, due to the instable energy supply and the limited battery capacity, renewable energy cannot guarantee to provide the perpetual operation for wireless sensor networks (WSN). The coexistence of renewable energy and electricity grid is expected as a promising energy supply manner to remain function for a potentially infinite lifetime. In this paper, we propose a new system model suitable for WSN, taking into account multiple energy consumptions due to sensing, transmission and reception, heterogeneous energy supplies from renewable energy, electricity grid and mixed energy, and multidimension stochastic natures due to energy harvesting profile, electricity price and channel condition. A discrete-time stochastic cross-layer optimization problem is formulated to achieve the optimal trade-off between the time-average rate utility and electricity cost subject to the data and energy queuing stability constraints. The Lyapunov drift-plus-penalty with perturbation technique and block coordinate descent method is applied to obtain a fully distributed and low-complexity cross-layer algorithm only requiring knowledge of the instantaneous system state. The explicit trade-off between the optimization objective and queue backlog is theoretically proven. Finally, the extensive simulations verify the theoretic claims.
The energy consumption in wireless multimedia sensor networks (WMSN) is much greater than that in traditional wireless sensor networks. Thus, it is a huge challenge to remain the perpetual operation for WMSN. In this paper, we propose a new heterogen
In past years there has been increasing interest in field of Wireless Sensor Networks (WSNs). One of the major issue of WSNs is development of energy efficient routing protocols. Clustering is an effective way to increase energy efficiency. Mostly, h
Future IoT networks consist of heterogeneous types of IoT devices (with various communication types and energy constraints) which are assumed to belong to an IoT service provider (ISP). To power backscattering-based and wireless-powered devices, the
Wireless Sensor Networks (WSNs) consist of large number of randomly deployed energy constrained sensor nodes. Sensor nodes have ability to sense and send sensed data to Base Station (BS). Sensing as well as transmitting data towards BS require high e
Wirelessly-powered sensor networks (WPSNs) are becoming increasingly important in different monitoring applications. We consider a WPSN where a multiple-antenna base station, which is dedicated for energy transmission, sends pilot signals to estimate