ترغب بنشر مسار تعليمي؟ اضغط هنا

EDDEEC: Enhanced Developed Distributed Energy-Efficient Clustering for Heterogeneous Wireless Sensor Networks

228   0   0.0 ( 0 )
 نشر من قبل Dr. Nadeem Javaid
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless Sensor Networks (WSNs) consist of large number of randomly deployed energy constrained sensor nodes. Sensor nodes have ability to sense and send sensed data to Base Station (BS). Sensing as well as transmitting data towards BS require high energy. In WSNs, saving energy and extending network lifetime are great challenges. Clustering is a key technique used to optimize energy consumption in WSNs. In this paper, we propose a novel clustering based routing technique: Enhanced Developed Distributed Energy Efficient Clustering scheme (EDDEEC) for heterogeneous WSNs. Our technique is based on changing dynamically and with more efficiency the Cluster Head (CH) election probability. Simulation results show that our proposed protocol achieves longer lifetime, stability period and more effective messages to BS than Distributed Energy Efficient Clustering (DEEC), Developed DEEC (DDEEC) and Enhanced DEEC (EDEEC) in heterogeneous environments.



قيم البحث

اقرأ أيضاً

In past years there has been increasing interest in field of Wireless Sensor Networks (WSNs). One of the major issue of WSNs is development of energy efficient routing protocols. Clustering is an effective way to increase energy efficiency. Mostly, h eterogenous protocols consider two or three energy level of nodes. In reality, heterogonous WSNs contain large range of energy levels. By analyzing communication energy consumption of the clusters and large range of energy levels in heterogenous WSN, we propose BEENISH (Balanced Energy Efficient Network Integrated Super Heterogenous) Protocol. It assumes WSN containing four energy levels of nodes. Here, Cluster Heads (CHs) are elected on the bases of residual energy level of nodes. Simulation results show that it performs better than existing clustering protocols in heterogeneous WSNs. Our protocol achieve longer stability, lifetime and more effective messages than Distributed Energy Efficient Clustering (DEEC), Developed DEEC (DDEEC) and Enhanced DEEC (EDEEC).
One of the limitations of wireless sensor nodes is their inherent limited energy resource. Besides maximizing the lifetime of the sensor node, it is preferable to distribute the energy dissipated throughout the wireless sensor network in order to min imize maintenance and maximize overall system performance. Any communication protocol that involves synchronization of peer nodes incurs some overhead for setting up the communication. We introduce a new algorithm, e3D (energy-efficient Distributed Dynamic Diffusion routing algorithm), and compare it to two other algorithms, namely directed, and random clustering communication. We take into account the setup costs and analyze the energy-efficiency and the useful lifetime of the system. In order to better understand the characteristics of each algorithm and how well e3D really performs, we also compare e3D with its optimum counterpart and an optimum clustering algorithm. The benefit of introducing these ideal algorithms is to show the upper bound on performance at the cost of an astronomical prohibitive synchronization costs. We compare the algorithms in terms of system lifetime, power dissipation distribution, cost of synchronization, and simplicity of the algorithm. Our simulation results show that e3D performs comparable to its optimal counterpart while having significantly less overhead.
Wireless sensor networks (WSNs) have great practical importance for surveillance systems to perform monitoring by acquiring and sending information on any intrusion in a secured area. Requirement of very little human intervention is one of the most d esirable features of WSNs, thus making it a cheaper and safer alternative for securing large areas such as international borders. Jamming attacks in WSNs can be applied to disrupt communications among the sensor nodes in the network. Since it is difficult to prevent jamming attacks, detection and mapping out the jammed regions is critical to overcome this problem. In a security monitoring scenario, the network operators will be able to take proper measures against jamming once the jammed regions in the network are known to them. It is also desirable to keep the interactions of the sensor nodes in the network minimal, as they are low powered devices and need to conserve their resources. In this paper we propose a light-weight technique for faster mapping of the jammed regions. We minimize the load on the sensors by removing the actual responsibility of mapping from the network to the central base station (BS). After a few nodes report to the BS, it carries out the task of mapping of the jammed regions in the network. We use our simulation results to compare our proposed system with the existing techniques and also to measure the performance of our system. Our results show that the jammed regions in a network can be mapped from fewer nodes reporting to the base station.
130 - N. Javaid , O. Rehman , N. Alrajeh 2013
One of the major challenges in Wireless Body Area Networks (WBANs) is to prolong the lifetime of network. Traditional research work focuses on minimizing transmit power, however, in the case of short range communication the consumption power in decod ing is significantly larger than transmit power. This paper investigates the minimization of total power consumption by reducing the decoding power consumption. For achieving a desired Bit Error Rate (BER), we introduce some fundamental results on the basis of iterative message-passing algorithms for Low Density Parity Check Code (LDPC). To reduce energy dissipation in decoder, LDPC based coded communications between sensors are considered. Moreover, we evaluate the performance of LDPC at different code rates and introduce Adaptive Iterative Decoding (AID) by exploiting threshold on the number of iterations for a certain BER. In iterative LDPC decoding, the total energy consumption of network is reduced by 20 to 25 percent.
229 - Zheng Sun 2008
A distributed spiral algorithm for distributed optimization in WSN is proposed. By forming a spiral-shape message passing scheme among clusters, without loss of estimation accuracy and convergence speed, the algorithm is proved to converge with a low er total transport cost than the distributed in-cluster algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا